
T H E  H E C TA R E S 
I N D I C AT O R :

A Review of Earth 
Observation 
Methods for 
Detecting and 
Measuring Forest 
Change in the 
Tropics

Edward Mitchard





November, 2016
Version 1.0 (Consultation Version)

Author:
Edward Mitchard

School of GeoSciences, University of Edinburgh, Crew Building,
The King’s Buildings, Edinburgh, EH9 3FF.

This document describes current and emerging earth observation technologies based on  satellites 
and other aerial data sources and an assessment of how these can be used to map forests and forest 
changes.

The document is an output from DFID project P7408 “Measuring Avoided Forest Loss from 
International Climate Fund Investments”.  

The authors accept responsibility for any inaccuracies or errors in the report. While this report is part 
of a UK Aid funded project the opinions expressed here do not necessarily reflect those of DFID or 
official UK government policies.

T H E  H E C TA R E S 
I N D I C AT O R :

A Review of Earth 
Observation 
Methods for 
Detecting and 
Measuring Forest 
Change in the 
Tropics



First published by Ecometrica in 2016
Copyright © Ecometrica, all rights reserved.

ISBN: 978-0-9956918-1-0

This document is to be distributed free of charge.
To contact the authors please write to Edward Mitchard, School of 
GeoSciences, University of Edinburgh, Crew Building, The King’s 
Buildings, Edinburgh, EH9 3FF.

Email: edward.mitchard@ed.ac.uk

Citation: Mitchard, E.T.A (2016) A Review of Earth Observation 
Methods for Detecting and Measuring Forest Change in the Tropics. 
Ecometrica. Edinburgh, UK.

Cover design by: Ellis Main
Printed by:  Inkspotz



Summary 

This document provides an introduction to the different types of Earth Observation (EO) data, and 

the different ways in which they can be used to map forests and forest change. EO data is divided 

into optical, radar and LiDAR, which are discussed in turn. A wide range of peer reviewed studies 

are discussed in order to assess the utility and accuracy of different methods in different 

circumstances. The review shows that optical data is the most widely used, radar next, and LiDAR 

last. This is precisely the opposite of their data content, with LiDAR being the richest data source, 

providing full cross sectional information on forests, radar potentially providing some of these 

data, and optical viewing only the top of the tree canopy and thus providing almost no three 

dimensional information. Decisions on which data type to use is clearly related far more to data 

availability, cost, and the complexity of the required analysis, than to which system would provide 

the most comprehensive information about a forest. 

The main results and guidance can be found in Tables 3 and 9, which present the optimum 

methods for mapping forest characteristics at a single time point, and mapping change in forest 

characteristics through time, respectively. The optimum method is defined as the method that 

best balances three factors: accuracy, cost (of both data and analysis), and maximum potential 

monitoring frequency. 

For forest characteristics mapping, high-resolution (<30 m pixels) optical data appears the most 

useful, with radar data potentially having a role, especially in combination with optical data for 

classifying forest into many forest types, or for its ability to see through clouds. For mapping forest 

change the picture is more complex, with optimal products depending on the forest type, 

proportion of time the study area is under cloud, the required temporal and spatial resolution, and 

whether the target of change detection is deforestation, degradation, or biomass change. Current, 

systematically produced and free-of-charge products are useful for low cost deforestation 

monitoring of moist or wet tropical forests, but are not useful in drier savanna ecosystems due to 

confusion by grass and tree deciduousness, nor for mapping degradation or biomass change. High 

resolution optical data is useful for degradation mapping, but only in areas with low to medium 

cloud cover. In areas with high cloud cover, or for drier ecosystems, radar is the most useful tool. 

Biomass mapping will normally need custom data collected from LiDAR on unmanned aerial 
vehicles or aircraft, as satellites that can provide suitable information are planned but not yet 

launched, and will have a coarse (>100 m) resolution regardless.  

It seems likely there will be a switch in the coming years from a reliance on US satellites for most 

forest monitoring (Landsat, MODIS), towards new satellites funded by the European Commission 

(Sentinel-1/2/3), due to increased temporal/spatial resolution and data provision guarantees. The 

potential from ever cheaper UAVs is discussed, with it being predicted that UAVs have much to 

offer for collecting reference data, while the potential from the launch of cheap and small 

satellites (e.g. cubesats) by private companies or governments is seen as more limited, but 

potentially significant in the future. 
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Glossary of Terms and Acronyms 

AGB 

ALOS PALSAR 

Commission 

error 
Deforestation 

Degradation 

EO 
ESA 
ETM+ 

JAXA 
LiDAR 

Machine 

learning 
MRV 

MSS 
NASA 
Neural 

network 
OLI 

Above Ground Biomass, the biomass of trees per unit area, usually given in Mg ha
-1 

(also 

tonnes/ha, which is identical) 

Advanced Land Observing Satellite Phased Array L-band SAR, a widely used L-band radar 

satellite operated by JAXA. Followed by ALOS-2 PALSAR-2. 

The proportion of pixels within a class in a classified map that in fact belong to a different class 

according to the reference data. It is the complement of User’s accuracy. 

An anthropogenic disturbance to a forest area, that results in that area no longer meeting the 

relevant forest definition 

There is no consensus on how forest degradation is defined. In this review it is considered as 

an anthropogenic disturbance to a forest area, that reduces its aboveground biomass, but 

after which it still meets the relevant forest definition  

Earth Observation, remotely sensed data from a satellite, aircraft or UAV platform 

European Space Agency 

Enhanced Thematic Mapper+, the main sensor on Landsat 7. Similar bands to TM, but with 

additional 15 m resolution panchromatic band. 

Japanese Space Exploration Agency 

Light Detection and Ranging, an EO method involving sending many short pulses of laser light 

and detecting the time taken for them to return, giving the distance between the sensor and 

various forest elements, as well as the ground. 

A data analysis and prediction technique involving a computer developing an algorithm itself, 

normally from a multi-dimensional dataset, without explicit programming. 

Measurement, Reporting and Verification, normally discussed in the context of the monitoring 

and reporting requirements for countries to take part in the UNFCCC’s REDD+ scheme 

Multi-Spectral Scanner, the main sensor used on Landsat 1-3, also present on Landsat 4/5 

the US National Aeronautics and Space Administration 

A widely used type of machine learning technique 

Operational Land Imager, the main sensor used on Landsat 8. Similar bands and resolution to 

ETM+, but much higher dynamic range (pixel values from 0-4095 rather than 0-255). 

Omission error 

Producer’s 

accuracy 
Radar 

The proportion of the reference data for a class that is allocated to a different class. It is 

complement to the producer’s accuracy. 

The proportion of reference data from a class correctly allocated to that class in an output 

map. It is the complement of omission error. 

A method of imaging using pulses of microwave radiation. Unlike optical data, usually only a 

single wavelength is used, named by single letters (e.g. L-band, C-band, X-band). 

Random forest 
REDD+ 

SAR 

TM 
UNFCCC 
User’s 

accuracy 

A machine learning technique often employed in remote sensing classification and regression. 

Reducing Emissions from Deforestation and forest Degradation, in developing countries, and 

the role of conservation, sustainable management of forests, and enhancement of forest 

carbon stocks in developing countries, a part of the UNFCCC agreements.  

Synthetic Aperture Radar, a type of radar that uses the flight of a travelling sensor (e.g. in a 

satellite) to simulate a far larger antenna than exists, allowing high resolutions from a 

distance. 

Thematic Mapper, the main sensor on Landsats 4 and 5 

United Nations Framework Convention on Climate Change 

The proportion of all reference data assigned to a particular class in a classified map that are 

truly that class in the ground truth dataset. It is the complement of commission error. 
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1  Introduction  

1.1  The challenge of mapping forests and forest change 
The woody vegetation of the tropics is highly diverse in its species composition and structure, and 

is changing fast. This change is a result of human actions (for example felling trees, setting fires, 

and damming rivers), recovery from past disturbance, and climate change.  

Woody vegetation varies in many different ways. Some of these axes of variation are continuous 

parameters, for example percentage canopy cover, maximum tree height, or carbon storage per 

unit area. Others are more discrete, for example the presence or absence of a grass layer, the 

presence of a certain tree species, or whether a forest was planted by humans or developed 

naturally.  

Policy makers, companies, non-governmental organisations and civil society all have their own 

motivations for wishing to know how these parameters are distributed across the landscape of 

their interest, and how these are changing. Normally they cut up these continuous distributions 

into distinct classes (dividing a landscape into say intact forest, secondary forest and ‘other 

wooded land’ based on canopy cover thresholds), and look at the rate of change from one class to 

another through time. Increasingly however they are also interested in changes within forest 

classes, for example rates of forest degradation or regeneration in terms of changes in carbon 

storage per hectare. It is important to these users that such data are available with high and 

consistent accuracy, little time delay, to a guaranteed schedule, and at minimal cost.  

Unfortunately, mapping forest characteristics in space and through time is challenging using any 

method. Large budgets cannot necessarily produce good forest change maps: for some 

parameters the methodologies necessary for producing maps at scale have not yet been 

developed or validated (for example biodiversity mapping), and it is impossible to retroactively 

collect new datasets from the past. Mapping change therefore often relies on the analysis of 

suboptimal historical satellite datasets, and mapping some modern day characteristics may involve 

active research, rather than applying existing methodologies. There is often a disconnect between 

the data that users would like, and what can actually be mapped with high accuracy, especially 

within, what might be considered, an acceptable budget for the user. 

The standard tool for quantifying forest characteristics is the forest inventory plot. In these, all the 

trees within a fixed area, often a hectare (100m x 100m), have their trunk diameter measured, 

their species determined, and potentially other measurements made such as their height. From 

these plots it is possible to differentiate different forest types, based for example on the dominant 

tree species, and to estimate aboveground biomass (the mass of carbon stored in the trunk and 

branches of the trees). For logistical and financial reasons however, it is only possible to sample a 

very small proportion of any forested landscape directly through plots: it may take an experienced 

team up to a week to set up a single one hectare plot in tropical forest. Therefore, plots are used 

typically to make initial, high fidelity estimates that are then scaled up to the landscape scale using 

Earth Observation (EO) data.  Such EO data, from satellites, manned aircraft, or Unmanned Aerial 

Vehicles (UAVs), will have an imperfect ability to map the characteristics of interest, but will cover 

a far larger area than would be possible using field plots alone. A further advantage to the EO data 

is that a survey can be repeated frequently using the same sensor, often at zero cost to the user.  

It is possible to remeasure field plots every few years in order to directly quantify how the forest is 

changing: for example a set of hundreds of such plots across the tropics have been remeasured 
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every few years to show that intact tropical forests are increasing in carbon storage (Pan et al 

2011). However, this is only appropriate for diffuse changes that are occurring across large areas. 

Plots are a very poor way of mapping changes that affect only a small proportion of the forest 

each year. For example, with deforestation or disturbances such as selective logging, it may be 

that 1 % of a forested area is deforested each year, but by coincidence none of the say fifty plots 

set up inside a forest are actually cleared during five years of monitoring. In fact, plots have been 

shown to be an especially poor method for monitoring clearance, as the plot corners and the trees 

themselves tend to be permanently marked, and people know that the plot is monitored, meaning 

that these people are less likely to clear the trees in the plot than those in the surrounding area. 

Therefore, while field plots are used to calibrate and validate EO based maps for a single time 

point, it is typically remote sensing data alone that is used to map changes in forest parameters. 

This introduces significant challenges, as the change in the signal detected by the EO instrument(s) 

over time is not necessarily related to changes in the forest characteristics, but may be due to 

changing atmospheric conditions, the vegetation looking different due to the season or recent 

rainfall, or calibration of the sensor itself. It is therefore important to test the accuracy of the 

change maps themselves using further ground data or independent EO products, and to choose 

EO data and methods that are least likely to lead to errors and biases in the resulting change 

products.  

1.2 Earth observation data types 

There are three main types of EO data: optical, radar and LiDAR (Figure 1). Each has different 

characteristics, strengths and weaknesses, and all three will be discussed throughout the report. 

Optical: Optical remote sensing data is the most widely available of the three, with over a hundred 

satellites collecting data regularly. There are a number of free options for optical satellite data, 

with the most widely used traditionally being Landsat, a series of satellites that started collecting 

data in 1972, with the data freely distributed for any use by the United States Geological Survey 

(USGS). There are currently two Landsat satellites in orbit (7 and 8), collecting data at a 30 m 

resolution. There are other satellites now collecting data at a far higher resolution, up to 31 cm 

pixels for Worldview-3, but these have a high cost. Optical data can also be collected from UAVs or 

manned aircraft, allowing cm-scale resolution from which it is possible to map individual trees, 

and if stereo data is collected (easy with such platforms through the use of overlapping flight lines) 

their relative heights. UAVs and manned aircraft also allow the collection of data using sensors 

with thousands of narrow bands (hyperspectral), from which characteristics such as drought stress 

or species type can be ascertained from the spectral signature.    

Optical data views the top of the canopy, and thus can be used to assess canopy cover and 

potentially estimates of the density and health of leaves. It has traditionally been the main tool 

used to map deforestation, and has been used with success to detect forest degradation, 

especially using data with high temporal and/or spatial resolution. However, it has two major 

problems: it cannot see through clouds, which cover much of the tropics most of the time, limiting 

observations; and it cannot see through the top of the forest canopy, meaning low-level 

degradation, not involving canopy trees, will be invisible. 
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Radar: Radar satellites look 

obliquely at the Earth’s surface using 

microwave data (in the mm – cm 

wavelength range). This microwave 

data can penetrate through the 

forest canopy to obtain information 

on forest structure, with the amount 

of radiation scattered back to the 

instrument (‘backscatter’) increasing 

as the number and/or size of trees 

present in an area increases. 

Therefore radar satellites have been 

used to map aboveground biomass, 

and to map degradation. However, 

they are limited by a saturation 

point, typically around 150 tonnes 

ha-1 aboveground biomass for L-

band (the longest, and therefore 

most sensitive, wavelength currently 

available), and 50-75 for C-band 

(which is more widely available). For 

comparison, dense tropical forest can have biomass values of over 400 tonnes ha-1, though values 

in the 250 – 350 range are more typical. Therefore available radar data is most useful for mapping 

biomass in savannas and woodlands.  

The letter names associated with different wavelengths are derived from military use, and have no 

particular significance. In order of increasing wavelength, those of relevance for forest mapping 

progress through X-, C-, S-, L-, and P-band. There has never been a P-band satellite, but one is 

planned for launch in 2021 (called BIOMASS), and this will have a saturation point for biomass 

sensitivity well above the 150 tonnes ha-1 mentioned for L-band above. 

Radar can also be used to accurately estimate surface/canopy height through a process called 

interferometry, which involves looking at the same area twice but from a slightly different angle 

and studying the phase difference between the waves. This has great potential for mapping 

degradation through studying changes in these canopy height models through time, but it does 

not on its own allow for the direct estimation of tree height unless an accurate model of the 

ground elevation is available (currently not available in most developing countries). It is 

theoretically possible to obtain ground as well as canopy height models from radar data, but not 

using any of the sensors currently in orbit. Interferometry can be used to map millimetre scale 

changes in ground elevation following earthquakes, but cannot achieve that same precision over 

forests due to temporal decorrelation: when returning to view a forest after a few days it will 

often have an entirely different response (as the leaves will be at a different angle, the wind may 

be blowing in a different direction, the water content might be different, let alone if trees have 

actually been removed), preventing accurate change mapping. One mission, TanDEM-X, solves this 

problem by using two satellites orbiting very close to each other, meaning data is collected from 

two angles simultaneously. Such data has been used successfully to map changes over forest, but 

its high cost limits its use over wide areas. In general, and even with TanDEM-X, interferometry is a 

difficult technique involving specialist software and expertise, and significant processing time. This 

method therefore remains more an area of research than an actively used technique, and most 

Figure 1 – the three sensor types

1) Optical

2) Radar

3) Lidar

InputBackscatter
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forest characterisation and change mapping is performed using backscatter information alone. 

Another active area of research is stereo radargrammetry, which again compares two radar 

images to build a canopy surface height model, but is able to use images with a wider difference in 

incidence angles and is potentially less sensitive to temporal decorrelation.  

LiDAR: LiDAR data uses laser light looking directly down to give tree height and structure. This 

enables a representation of a forest to be built up with structural parameters such as height, stem 

density and canopy cover estimated directly.  Repeat surveys can therefore see the removal of 

individual trees, and thus it is the only remote sensing method that can guarantee to map 

degradation with high accuracy even if the magnitude or size of disturbance is low.  

Figure 2.LiDAR data captured from a helicopter over Gabon, showing houses and surrounding 

small and tall trees. 

Most aircraft LiDAR data collected is discrete, small-footprint LiDAR, where a number of individual 

narrow pulses is sent into each m2 (1-5 pulses would be typical), and 3-5 returns detected for each 

pulse, so that the height difference between the ground and a point near the top of a tree can be 

calculated. This gives high resolution maps of canopy cover and height, from which biomass can be 

calculated. More sophisticated products can be produced through full waveform LiDAR, in which 

the full return profile from each beam is stored, allowing more detailed characterisation of sub-

canopy layers. In both cases the stems of individual trees can often be mapped, but the resolution 

and views are too low to allow for the direct mapping of tree stem diameter – instead tree height 

is the main characteristics that can be used to estimate tree biomass. Full waveform LiDAR can 

also be collected using wider beams from a higher altitude plane: such data can cover a much 

larger area during one flight, but the forest characteristics are normally averaged within 10 or 20 

m pixels, and individual trees cannot be identified. 

No LiDAR satellite is currently collecting data, so LiDAR can only be obtained through aircraft or 

UAVs, at high cost. However, two spaceborne missions, GEDI and ICESAT-2, are soon to be 
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launched, while the data from a satellite in the mid-2000’s (ICESAT GLAS) has been used to assist 

in the development of pantropical tree height and biomass maps. 

1.3 Earth observation platforms and trade-offs 

There are certain trade-offs in EO data that apply regardless of the type of data collected. These 

include:  

- the higher the spatial resolution of a satellite sensor, all else being equal, the longer the

gaps between repeat images of the same location as the sensor will normally have a

narrower field of view, capturing a smaller portion of the Earth during each orbit

- the type of platform used, comparing the low-cost and ease of use of a satellite with the

high resolution and flexibility of a UAV or aircraft

- the more cutting edge the sensor, the less likely there will be comparable historic data

available

- the higher the spatial resolution, or the more esoteric/advanced the data type, the higher

the cost for the data and the greater the complexity in retrieving parameters of interest.

Each of these is discussed in turn below, and will return as constraints throughout this report. 

Spatial/temporal resolution trade-off. This is best illustrated by an example using satellite 

sensors. MODIS is a widely used sensor that has operated from 2000, collecting data at a 

maximum resolution of 250 m (when resolution is discussed like this for an EO sensor, we mean 

that the smallest pixel size of its outputs are squares with a side of 250 m, and thus a total pixel 

area of 6.25 ha). It is carried by two satellites, and due to its relatively coarse resolution each can 

view a wide strip of the earth on every orbit: thus most of the planet is viewed 4 times per day, 

and at least one cloud-free view of everywhere on the earth is pretty much guaranteed in a 16-day 

period. MODIS is therefore ideal for monitoring changes with a small temporal lag, and for 

recording exactly when a change occurred. However, the pixel size is far larger than most 

deforestation events, so much deforestation could occur and remain invisible to MODIS. Landsat 

8, another widely used satellite, captures images in similar wavelengths but with a resolution of 30 

m (for most bands). This means it has almost 100 pixels for each MODIS pixel. However, this higher 

resolution means it can only image the world once every 16 days, and it may therefore only obtain 

a cloud-free image 1-2 times per year in much of the tropics, and in some very cloudy areas the 

ground has never yet been seen by Landsat 8, even though it has been operating since 2013. 

This general trade-off applies to radar and LiDAR sensors as well: in general high spatial coverage 

(and consequent frequent revisits) is not compatible with high resolution. There are three 

exceptions to this general rule. Firstly, hyperspatial (exceptionally high resolution) sensors, such as 

Worldview-3 with a 31cm pixel size, do not attempt to systematically image the whole planet. 

Instead their acquisitions are targeted based on the requests of paying customers. While individual 

image footprints are small, the sensor can be pointed so that revisit times as low as 1 day can be 

achieved. Thus given sufficient funds, frequent high-resolution images are possible. Secondly, a 

new generation of satellite sensors are being launched that manage to capture comparatively high 

resolution data at a frequent temporal resolution: for example the two Sentinel 2 satellites 

capture 10 m resolution optical data with a 5-day repeat cycle through the use of a sensor with a 

wide swath and very high pixel density. Looking further ahead, similar or better data may be 

available through ‘swarms’ of tens or hundreds of smaller satellites launched by private companies 

(for example Planet Labs is hoping to launch a sufficient number of its Dove cubesats to image the 

whole Earth every day at 3-5 m resolution). Finally, the rise of cheap UAVs has allowed the easy 
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capture of high resolution data over an area of interest as frequently as desired, though logistical 

issues related to sensor maintenance, site access, and data processing, may make this less 

effective for monitoring in practice than theory suggests. 

Platform type. There are three types of regularly used EO platform: satellites, aircraft and UAV. 

Optical, radar and LiDAR sensors can operate from all three. Satellites are the most widely used of 

the three, for a number of reasons: 

- They are the only option that captures data that is consistently provided free to the user,

with much satellite data now given away under open licences.

- They represent the most stable and consistent platform for EO data capture, which is very

useful for change detection. Most EO satellites are set up to consistently capture data

from the same point in the sky at the same time of day, and can continue doing this for

many years. This increases the confidence that changes observed are due to changes on

the ground, rather than to sensor characteristics or look angle.

- From space it is possible to view a very wide swath of the earth, so they are the best

option for imaging large areas.

- Viewing the world from a very long way away means that the extreme left and right of an

image scene are viewed with quite a similar angle. By contrast, viewing from a hundred

meter altitude by a UAV, a wide-angle lens results in a very different look angle to the left

and right of the scene. Mosaicing images and producing consistent change products is

much easier if look-angle variation is smaller: many satellite data products effectively

assume every pixel is looked at from directly above, which can be a reasonable

approximation in many cases; this is not possible from UAV data.

However, airborne and UAV platforms do offer advantages to a potential user in that a user can 

have far more control about what instruments are flown and when. For some sensor types, for 

example complete coverage LiDAR, there may be no choice but to use airborne or UAV platforms. 

These advantages do come at an often considerable cost, both in terms of the data capture itself, 

but also in terms of post processing, which is often far more time consuming and difficult from 

such platforms due to the need to stitch together many narrow passes, with differing angles and 

from different elevations.  

Advanced technology vs historical data. There is often a desire to use the latest possible 

technology and most advanced techniques to map forest characteristics. However, the range of 

sensors available in the past was much more limited than the present day, with the variety and 

resolution of satellite sensors we are used to now only really available from the late 2000’s 

onwards. When setting up Reference (Emissions) Levels for REDD+, as an example case where 

historical data is necessary, it is often necessary to go back in time to a date near 2000 where long-

wavelength radar and hyperspatial optical data is not available. Landsat may represent the only 

reasonable option, despite its limitations. The problem obviously also applies to UAV and LiDAR 

data, where it is very unlikely that sites will have been flown in the past.  

This means that projects that do use the most advanced technologies, but also need historical 

data, often end up needing to cross-calibrate their modern layers with lower resolution or 

different satellite products, in order to have comparable datasets to those available from the past. 

This necessarily results in a loss of some of the advantage of having the advanced data for the 

current time period. It is for this reason that there is often a lag in taking up the most recent 

technologies for change monitoring, and why Landsat (the satellite series with the longest 
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continuous record, with data comparable to that still captured available from 1984 onwards) will 

continue to be used far into the future. 

Cost vs resolution/sophistication. Much satellite EO data is now available free of charge. This 

typically includes all coarse resolution satellites (>250 m resolution), and increasingly most 

medium resolution satellites (~>15m). The highest resolution free data comes from the EU’s 

Sentinel satellites, with Sentinel-1 and Sentinel-2 both offering open data at 10 m resolution, at C-

band radar and multi-band optical data respectively. However, all satellite data with a resolution 

<10m, most satellite radar data, and obviously all data specially captured for a project using an 

aircraft or UAV, will have a cost. In general costs increase directly with resolution, with Worldview-

3 data (31 cm resolution) about 10x more expensive per hectare than RapidEye data (5m 

resolution). Cost is therefore a significant factor in the choice a user makes as to whether to use a 

more sophisticated or higher resolution product, which might increase the accuracy or precision of 

the resulting maps but at a higher cost.  

1.4  Definitions and the difficulty of categorising continuous data 

Another major issue in the mapping of forest characteristics and their changes is in defining the 

relevant processes. Terms such as ‘forest’ and ‘deforestation’ can be defined very differently by 

different actors and in different contexts, meaning that the same remote sensing signal can result 

in an entirely different output under certain conditions.  

Ultimately there is a contrast between continuous parameters, such as aboveground biomass or 

canopy cover, and human constructs such as ‘secondary forest’. In most cases such terms are 

defined in terms of a continuous variable, for example secondary forests might be defined in a 

particular landscape as having a canopy cover between 30 % and 60 %. Where it is possible for 

results to be reported in terms of continuous maps of change they should be, as there is then less 

room for inconsistencies between products due to definitions, but often for practical reasons or to 

meet user requirements it is necessary for reporting to take place in terms of the movement of 

pixels between binary categories.  

Forest is typically defined in terms of an area of woody vegetation that meets or exceeds specific 

thresholds of canopy cover, height and area (see Section 2). Deforestation is thus defined as areas 

that once met this forest definition, but no longer meet it. Given forest definitions change from 

user to user, it is possible for the same removal of trees to be counted as deforestation in only one 

of two products, with both being technically correct. Similarly, most definitions of forest 

degradation, a harder concept to define than deforestation, include a statement that the removal 

of biomass or other damage to the forest must have been caused by humans. This means that 

exactly the same loss of aboveground biomass, causing the same signal in the remote sensing 

data, could be caused by either humans or by a hurricane, but only in the former case would it 

count as degradation. In these cases it is clear that detection of changes is a harder task than 

simply knowing what has happened to the trees within an area: ancillary information and rules are 

necessary. This adds a further challenge, meaning that generally-applicable algorithms and 

products will often need adapting to local circumstances, to produce results that are consistent 

with ecological definitions as well as policy and legal interpretations.  
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2 Diversity of forests and forest change processes in the tropics 

There is an enormous diversity of types of woody vegetation in the tropics, made up of tens of 

thousands of tree species arranged in different ways under very different physical and climatic 

situations. Similarly, there is a great diversity of ways in which these forests are changing, some 

related to human activity, and others related to natural processes of succession and responses to 

our changing climate.  

Every forest is unique and much variation in space and time is continuous, defying easy 

classification into hard categories. Nonetheless, such classification essential if we are to develop 

maps and change products. This section reviews first the definition of forest and forest types, and 

then the definitions of change, in order to allow an understanding of what it is we are trying to 

map with EO data.  

2.1 Definitions of forest 

We traditionally understand the term forest to mean an aggregation of trees, and normally picture 

a large expanse of mature or reasonably mature trees. One comes into difficulties when 

attempting to use this definition as the individual terms must be defined: what exactly is a tree? 

How many trees need to be together for it to be an aggregation? How close do these trees need to 

be to each other? How large should they be?  

Scientists have often been able to sidestep this question, choosing definitions that suit the 

question at hand. However, once a forest area became part of Land Use, Land Use Change & 

Forest (LULUCF) reporting requirements under the treaties of the United Nations Framework 

Convention on Climate Change (UNFCCC), it became necessary to have a legal definition of forest. 

However, in negotiations it became clear that countries did not wish to have a single definition 

enforced on them, as differing environmental conditions and political requirements meant they 

had different desires. There was therefore an agreement to allow countries to choose their own 

forest definition, but only within a specified range of three axes: 

- Canopy cover: between 10 and 30 %

- Minimum Tree height: of between 2 and 5 metres

- Minimum area: of between 0.05 ha and 1 ha

Almost all countries have now chosen definitions using these axes, with those for a few example 

countries given in Table 1 to show the variety chosen: 
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Table 1. Forest definitions for UNFCCC purposes for various countries 

Country Canopy cover Tree height Minimum area 

Brazil 10 % 5 m 0.5 ha 

Democratic 

Republic of 

Congo 

30 % 3 m 0.5 ha 

Ghana 15 % 5 m 1 ha 

Guyana 30 % 5 m 1 ha 

Kenya 15 % 2 m 0.5 ha 

Vietnam 10 % ◦ 5 m (natural forest)

◦ 1.5 m (slow-growing plantations)

◦ 3 m (fast-growing plantations)

0.5 ha 

It can be seen from the example above that countries have not coalesced on a single value of any 

of these parameters. The only one with some consensus is the minimum area, which once saw a 

wide spread of values from 0.05 ha up to 1 ha. The message from remote sensing specialists that 

the smallest area of forest that could reasonably be mapped using free data (or even, in all 

likelihood, with commercial data, if considering a country scale) is half a hectare, and that 1 

hectare was preferable. The use of such a number also greatly simplified reporting and monitoring 

by greatly reducing the number of individual forest patches, without normally reducing actual 

forest area much, compared with using a smaller minimum value. However, the variety of tree 

height and canopy cover characteristics represent a continued challenge for remote sensing 

methods, meaning that solutions cannot be easily transferred across borders.  

It should be noted that these parameters do not directly correspond to the carbon storage of the 

ecosystem. It is possible to estimate the aboveground biomass (AGB) of an area by multiplying 

these three factors, as an increase in canopy cover, tree height, or area all approximately 

correspond linearly to an increase in AGB. However, more normally (and accurately) AGB is 

estimated by measuring the diameter of individual trees within a fixed area, and ideally also 

estimating their height (Chave et al 2014). It is therefore quite possible for an area of trees in one 

location in a country to not be classified as forest, and yet have a higher carbon storage than 

another that is classified as forest. Further, significant carbon may be stored in other ecosystem 

carbon pools, for example in soil (especially in peat areas). Such carbon pools are not easily 

mapped by remote sensing, but can be estimated using ground data, and then extrapolated 

through the mapping of different vegetation types with different yet known, below-ground, 

carbon stores (Draper et al 2014). 

2.2 Definitions of deforestation and degradation 

From the above, it is relatively easy to define deforestation. This is generally accepted to be the 

clearing of trees from an area that was classified as forest such that it no longer meets one or 

more of the three forest criteria in that jurisdiction. Also that the clearance can occur either 

directly through harvest, or by setting fires, but would not normally include natural processes such 

as the destruction of forest following a hurricane. 
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Degradation is however more difficult to define. The IPCC has defined it, somewhat confusingly, as 

‘direct human-induced long-term loss (persisting for X years or more) of at least Y% of forest 

carbon stocks (and forest values) since time (T) and not qualifying as deforestation' however, this 

definition requires definitions of X, Y and T, something the IPCC does not attempt (IPCC, 2003). 

Others have suggested definitions need to include characteristics relating to biodiversity or 

ecosystem services, which can be very hard to map on the ground, let alone by satellite (Herold & 

Skutsch 2011). 

For the purposes of this review we will use a definition based on parameters that can be easily 

monitored from EO data and that relate to carbon emissions: ‘degradation is the loss of 

aboveground biomass due to anthropogenic disturbance from an area defined as forest, that 

remains defined as forest after the disturbance.’ The loss could equally be defined in terms of 

canopy cover, which is the parameter most easily monitored by optical remote sensing data, but 

aboveground biomass is preferred because the removal of sub-canopy trees is definitely 

degradation, but will often not change observed canopy cover. In all cases though the removal of 

trees will cause a reduction in forest biomass. 

3 Classifying forests 

Mapping forests and forest change can be broken down into two related, but distinct, problems. 

One is the production of one-time maps for forests and forest types, the other is maps of change. 

One-time maps range from the very simple, mapping of forest vs non-forest, through to the more 

complicated maps dividing forested areas into different strata, or the whole landscape into land 

use as well as land cover categories. Such one-time maps may also have classes that relate to 

change, for example classes called ‘degraded forest’, which suggest that such forest was at one 

time ‘intact forest’ and has since been degraded. Similarly, a comparison of one-time maps 

produced at different points of time is often used to provide statistics and maps of the area of 

forest that has changed. 

One-time forest classification and change detection are however distinct disciplines, and a naïve 

comparison of forest type maps produced at different points in time should not be considered as 

change detection and can lead to spurious results (GFOI 2014, GOFC-GOLD 2015). Change statistics 

between one-time maps must consider the errors and biases involved in each map, their 

comparability, and the resulting error characteristics of the change maps themselves, rather than 

simply propagating the thematic accuracy for the individual land cover classes. It is now widely 

recognised that change detection should be approached through direct comparison of remote 

sensing products from multiple time periods, rather than from comparing individual maps (GFOI 

2014). 

Here we therefore consider the two problems separately, in this section discussing and evaluating 

methods for mapping forest types and strata, and in Sections 4-6 discussing the more difficult 

problem of change detection. 
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3.1 Satellite datasets used for mapping forest type 

Table 2 shows the main satellites that have been and are used for mapping forest from non-

forest, and for mapping different forest types. Example studies are given that have used the 

satellite in question, along with a short description of methods used and, where available, 

information on accuracy of the results.  

This table is a demonstration of what is possible with each satellite dataset. As with all reviews of 

the literature there is a significant publication bias: negative results are rarely published (Fanelli 

2012). It is therefore necessary to infer from what is not published, in terms of types of 

stratification and study areas, in addition to considering the accuracy provided, when attempting 

to use these data to assess the strengths and weaknesses of each satellite sensor and 

methodology.  
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Table 2. Satellites used for one-time forest and forest type mapping 

Satellite 

sensor 

Period 

operational 
Resolution Study and site 

Number of classes 

mapped & method 
Accuracy assessment 

Optical satellite data 

Corona 

(spy 

satellite) 

1962-1972 2-3 m Song et al 

(2015) Central 

Brazil 

(covering parts 

of Mato 

Grosso, 

Tocantins & 

Para). 

Corona satellite data 

has only one band, 

i.e. it is black & white.

Its high resolution

texture was used to

enable SVM

classification of

forest/non-forest at a

30 m resolution.

90% accuracy for 

forest/non-forest 

against independent 

(but visually derived) 

training points.  

Landsat 

MSS 

Landsat 1: 

1972-78 

Landsat 2: 

1975-83 

Landsat 3: 

1978-83 

57 x 79 m Roy et al 

(1985): forest 

types in 

Arunachal 

Pradesh, India. 

Uses Landsat 2 MSS 

data from 1979. Six 

different forest types 

are considered. Both 

automated (using a 

simple computer 

classifier) and manual 

classification tested. 

Accuracy assessed 

using independent 

field data, best map 

varied between 54 

and 95 % by class. 

Overall ~75%. 

Computer classifier 

outperformed 

manual classification. 

Huang et al 

(2009), 

Atlantic Forest 

of Paraguay 

As part of a larger 

study, 3x3 windows 

of Landsat 1 MSS 

pixels were visually 

assessed as being 

‘forest’, ‘non-forest’ 

or ‘partially-forested’. 

The resulting points 

were compared to 

Landsat TM 

classifications to 

estimate 

deforestation rates, 

but no accuracy 

assessment was 

attempted.  

Landsat 

TM 

Landsat 4: 

1982-1993 

Landsat 5: 

1984-2012 

30 m Foody et al 

(1996), 

regenerating 

forest near 

Manaus, Brazil 

Maximum likelihood 

classification of 5 

regeneration classes. 

User’s accuracy for 

classes ranging from 

97% (for <2 years 

and >14 years) to 

39% (for 3-6 years). 

Overall accuracy 

73%. Much 

misallocation 

between 

neighbouring classes. 
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1
 University of Maryland (2016). ‘Global Forest Change 2000–2014 Data Download’ URL: 

http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html 
2
USGS (2016). ’Global Tree Canopy Cover circa 2010’ URL: 

http://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php 

Landsat 

ETM+ 

Landsat 7: 

1999-

present 

(Scan-line 

corrector 

failed 2003) 

Pan: 15m 

MS: 30m 

Salovaara et al 

(2005), intact 

primary forest 

in NE 

Amazonian 

Peru  

3 forest types: 

Inundated forest, 

terrace forest and 

Pebas formation. All 

have distinct species 

assemblages. 

Classification using 

simple discriminant 

analysis using ETM+ 

and elevation 

variables. 

Accuracy was low at 

200m scale, but 

better at 500 m 

scale. Overall 

accuracy of 85%, but 

with user’s accuracy 

of only 48% for the 

Terrace forest class 

which was confused 

with the Pebas 

formation.  

Hansen et al 

(2013), global 

maps of % tree 

cover 

% tree cover mapped 

globally for 2000 

(data available here1) 

and 2010 (here2) at 

30 m resolution, 

based on ETM+ data 

from 2000-2012 and 

training data derived 

from hyperspatial (<2 

m resolution) imagery 

and a bagged 

regression tree 

approach. Effectively 

an update of the 

Vegetation 

Continuous Field 

product, an annual 

tree cover product 

produced using 

MODIS data at 250 m 

resolution. 

No formal accuracy 

assessment was 

performed for these 

tree cover products. 

Various studies since 

have found them to 

have significant 

regional biases, but 

overall to show the 

correct patterns. 

Clearly these tree 

cover percentage 

products are not true 

classifications, but 

the continuous %tree 

cover layers can be 

easily divided into 

classes within a 

country or region, 

with differing 

ecological 

characteristics 

and/or disturbance 

histories.  

http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
http://landcover.usgs.gov/glc/TreeCoverDescriptionAndDownloads.php
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Hansen et al 

(2016b), 

vertical 

transect 

through the 

entire African 

tropics, 

covering 

grassland, 

savanna, 

woodland and 

tropical forest. 

Uses ICESat GLAS 

LiDAR data to provide 

training data on tree 

height, then maps 

this at 30 m using 

Landsat 7 & 8. 

Discovers the data 

naturally fall into 3 

classes of forest 

height: 5-10m, 11-

17m, and >18m. 

Training using a 

bagged regression 

tree algorithm, 

choosing the median 

results of 7 bagged 

models each based 

on 10% of the training 

dataset. 

Found no ability to 

distinguish heights of 

trees >20m using 

Landsat data; 

showed that 

accuracy of height 

modelling increased 

greatly with multiple 

observations. Mean 

Absolute Error is 

~4m with 10 good 

observations, but 

falls to <2 with >40 

observations. 

Interquartile red 

reflectance (i.e. 

mean of the middle 

25%-75% of 

observations for 

each pixel) was the 

most important 

variable. 

Landsat 

OLI 

Landsat 8: 

2013 - 

present 

Pan: 15m 

MS: 30m 

Fan et al 

(2015), 

Xishuangbanna 

region of 

southwest 

China 

Examined 3 classes: 

natural forest, rubber 

plantations and 

agriculture. Multi-

temporal OLI data 

from March 2014 was 

differenced from 

February 2014: over 

this period rubber 

loses its leaves so has 

a big difference, but 

natural forest stays 

green.   

96% accuracy in 

distinguishing the 

classes, against 

independent test 

data derived from 

visual interpretation 

of high resolution 

(<5m) optical data 

and field plots. 
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SPOT-4 

VGT 

SPOT-4: 

1998 - 2013 

1000 m Mayaux et al 

(2006) – 

Global Land 

Cover 2000 

(GLC2000) 

map 

A global land cover 

map was produced 

for the Millennium 

Ecosystem 

Assessment by the 

EU’s Joint Research 

Centre, involving 

hundreds of global 

collaborators. It had a 

common 16-class 

legend involving 8 

forest classes (though 

some regional maps 

divided these into 

further classes). 

Validation against 

Landsat data 

suggested an overall 

accuracy of around 

45%. However this is 

mostly due to the 

effect of mixed pixels 

in this coarse 

resolution dataset. 

For 1000m pixels 

that were entirely 

homogeneous 

accuracy was 91% - 

but this was only 9% 

of the total 

validation data. 

When classes were 

collapsed to just 

forest/non-forest 

accuracy increases to 

80%. 

Carreiras et al 

(2006) 

Brazilian Legal 

Amazon 

4 forest classes: 

Cerrado savanna, 

agriculture/pasture, 

secondary forest, 

primary forest. 

Trained using visual 

analysis of Landsat. 

Used various machine 

learning algorithms; 

tested Probability-

bagging Classification 

Tree (PBCT) had 

highest accuracy.  

Overall accuracy 

reported at 92% 

using PBCT. 

However, this 

overstates accuracy 

as this was poor for 

some classes, 

especially Secondary 

Succession Forest 

which had 

commission errors of 

>40% and omission

errors of >60%.

Cerrado savanna also

had errors >80%.

Waterbodies,

pasture and primary

forest were very well

mapped, inflating the

overall reported

accuracy.
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MERIS ENVISAT: 

2000 - 2012 

300m Arino et al 

(2007), 

GLOBCOVER: 

Global land 

cover maps for 

2005 and 2009 

Global landcover map 

for the years 2005 

and 2009 was 

produced by a 

consortia of ESA & EU 

organisations, 

essentially updating 

the GLC2000 map 

described above but 

at 300m resolution 

and using 22 classes. 

The thematic 

accuracy of 

GLOBCOVER is 

estimated at 73% 

weighted across all 

classes (Defourny et 

al 2012), 

considerably 

exceeding that of 

GLC2000. 

Considerable 

confusion still existed 

between forest 

classes.   

MODIS Terra: 

2000- 

present 

Aqua: 

2002-

present 

250m – 

1000m 

depending 

on band 

Friedl et al 

(2010), global 

landcover, 

produced 

annually at 

500 m 

resolution 

from 2000 – 

present. 

Defined 17 classes, 

divided into various 

different higher-level 

schemes. 

Classification 

confidence layer also 

produced. Ten 

boosted decision 

trees used to produce 

the product, based on 

training data from 

1860 sites distributed 

globally.   

Overall accuracy 

estimated at ~75%, 

though errors for 

some classes and in 

some areas can be 

far higher. 

Considerable 

confusion exists 

between forest 

classes, especially 

when pixels may be 

mixed at 500 m 

scale. 
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Baccini et al 

(2012), 

pantropical 

map of 

Aboveground 

Biomass (AGB) 

Mapped 

Aboveground 

Biomass (AGB) 

throughout the 

tropics for 2007 using 

500 m MODIS data, 

trained using ICESat 

GLAS laser footprints. 

RandomForest was 

used to extrapolate 

the GLAS footprints 

using the MODIS 

data. 

Root Mean Squared 

Error (RMSE) of ~25 

Mg C ha-1 against 

independent test 

data (though this 

itself has errors and 

biases, (Mitchard et 

al 2014)). 

Approximately 

equivalent to an 

accuracy of about 

70% if attempting to 

place 500 m pixels in 

the correct 50 Mg C 

ha-1 biomass class 

(this would divide 

most tropical 

woodland/forest 

areas into 4-5 

classes). 

Rapid 

Eye 

2009 – 

present 

5m Adelabu et al 

(2013), 

mapping types 

of mopane 

woodland 

dominated by 

different 

species in 

Botswana 

Training data were 

collected for 5 

different classes of 

Mopane woodland in 

the field, and then 

pixel-based 

RandomForest or 

Support Vector 

Machine classifiers 

used on the 5-band 

RapidEye data. 

Overall accuracy 

against test data of 

89% for SVM, 85% 

for RF. Some classes 

only achieved user 

accuracies of 82-

84%, others ~94%. 

Pixels were averaged 

within polygons 

collected on the 

ground for training 

data, so the training 

was object-based.  

Sentinel-2 2016 – 

present 

10m No studies are published as yet. However Sentinel-2 will 

become very widely used for forest mapping in time due to its 

high revisit time (<5 days, compared to 16 days for Landsat) 

and high resolution. It is thus included in this table for 

completeness purposes. 

IKONOS 2000 – 

2015 

Pan: 1m 

MS: 4m 

Wang et al 

(2004), 

mangroves on 

the Caribbean 

coast of 

Here 3 types of 

mangrove plus 

rainforest were 

distinguished using 

object-based and 

A combined object-

based and pixel-

based method 

achieved an overall 

accuracy of 92%, 
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A number of satellites 

with a similar capacity 

but higher resolution 

still now fly, named 

GeoEye-1 and 

WorldView-1/2/3/4 

Panama pixel-based methods, 

using standard 

spectral-based 

classifiers obtaining 

data from either the 

clusters or the pixels.  

with individual user’s 

accuracies ranging 

from 74% for ‘red 

canopy mangrove’ to 

98% for ‘white 

canopy mangrove’.   

Synthetic Aperture Radar (SAR) 

JERS-1 

(L-band) 

1992-1998. 

HH only. 

20 m 

(normally 

used at 

100m) 

Podest and 

Saatchi (2002), 

Amazon 

rainforest 

Tested in two sites: a 

forest/savanna area 

(4 classes) and a 

flooded forest area (6 

classes), using a 

multi-scale texture 

classifier.  

Accuracies >87% for 

all cases, except for 

permanently and 

seasonally flooded 

forest where there 

was confusion 

between the two 

classes giving ~76% 

accuracies. 

ALOS 

PALSAR 

(L-band) 

2006 – 

2011 

12.5 m 

Most 

widely 

used 

mode 

(FBD) is 

HH+HV 

Hoekman et al 

(2010), 

complete 

vegetation 

map of Borneo 

FBD (HH+HV) and FBS 

(HH only) mosaics for 

all of Borneo created 

for 2007. Semi-

supervised mixture 

modelling followed by 

Markov Random Field 

classification. 9 forest 

classes, plus 11 other 

land cover classes. 

86% accuracy, with 

further 8% of 

confusion a case of 

‘partial agreement’, 

i.e. confusion with a

very similar class.

Given large number

of classes this is an

excellent

performance.

Thapa et al 

(2014), forest-

non/forest 

map of 

Sumatra, 

Indonesia. 

Attempted to use a 

single HV threshold to 

separate natural 

forest from non-

forest across the 

island. 

A threshold of -11.5 

dB HV had the 

highest accuracy, 

with 79% of pixels 

correctly classified 

compared to a test 

dataset. 
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Radarsat 

1/2 

(C-band) 

Radarsat-1: 

1995-2013 

Radarsat-2 

2007-

present 

8 m 

(HH) 

8 m 

(HH + HV, 

or full pol, 

i.e. also VV

+ VH).

Li et al (2012) 

Pará state, 

Brazil, along 

Transamazon 

Highway 

ALOS PALSAR 

(HH+HV) and 

Radarsat-2 (HH+HV) 

used alone and in 

combination to map 6 

forest classes, 

including 3 intact and 

3 recovering classes. 

Various algorithms 

tested, from simple 

maximum likelihood 

through to neural 

networks (Fuzzy 

ARTMAP) 

Neither performs 

well individually. 

When forest split 

into just two classes 

(along with 4 other 

non-forest classes), 

ALOS PALSAR metrics 

(including texture) 

achieves 74% 

accuracy, and 

Radarsat-2 55 %. The 

neural network 

(Fuzzy ARTMAP) and 

regression tree 

classifiers performed 

similarly and best, 

outperforming the 

simpler maximum 

likelihood 

classification.  

ASAR 

(C-band) 

ENVISAT: 

2000-2012 

30 m 

(HH + HV) 

Dong et al 

(2015), Riau 

Province, 

Sumatra, 

Indonesia 

Multi-temporal ALOS 

PALSAR (HH+HV) and 

ENVISAT ASAR 

(HH+HV) data were 

compared with 

Landsat 7. A 4-class 

classification was 

attempted, 

differentiating Oil 

Palm, Acacia, Natural 

forest and non-forest 

classes, using 

maximum likelihood 

classifications both 

alone and in 

combination.  

Dual-band ASAR data 

could distinguish 

classes with an 

accuracy of 86% 

(compared to an 

unvalidated optical 

map). Adding L-band 

data did not improve 

the accuracy, 

suggesting C-band 

data can classify 

these forest types 

well.  
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Sentinel-1 Sentinel-

1a: 

2014-

present 

Sentinel 1b: 

2016-

present 

Normal 

IWS mode 

(HH + HV, 

or single 

HH or VV) 

20 m 

Balzter et al 

(2015), 

Thuringia, 

Germany (no 

tropical studies 

have been 

published as 

yet) 

Sentinel 1A HH/HV 

and VV/VH scenes 

tested for classifying 

27 CORINE classes, 

including 3 forest 

classes (broad-leaved, 

coniferous and mixed 

forests), with 

elevation data also 

used to assist the 

classification. 

Best overall accuracy 

of 68%, including the 

elevation data. Radar 

alone had a best 

accuracy of 48%. 

User accuracy for the 

forest classes in this 

best classification 

were 71%, 79% and 

42% respectively, 

with almost all 

confused pixels 

classified as an 

alternative forest 

class. 92% accuracy 

for identifying forest 

when considered 

together. 

TanDEM-X 

(X-band) 

TerraSAR-X 

2007-

present 

TanDEM-X 

2010-

present 

From 1 m De Grandi et al 

(2016), Sungai 

Wain 

Protection 

Forest, 

Kalimantan, 

Borneo, 

Indonesia.  

Operating together, 

these two satellites 

allow the production 

of very accuracy 

Digital Surface 

Models (DSM). This 

study uses the 

texture of a DSM at 

5m resolution (the 

satellite did not 

collect the data used 

here at the maximum 

possible resolution) 

to differentiate 

primary and 

secondary forest, as 

well as scrub and 

grassland.  

The accuracy of 

separation of 

primary and 

secondary forest is 

estimated as lying 

between 85 and 98 

%. This compares 

poorly to airborne 

LiDAR compared in 

this study (94-99%), 

but is still an 

encouraging result. 

Forest/non-forest 

were separated with 

an accuracy >95% by 

both radar and 

LiDAR.  

Radar/Optical Fusion 
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Landsat 5 

TM, JERS-

1 

(L-band) 

SIR-C 

(C-band) 

X-SAR

(X-band)

Landsat 5: 

1984-2012 

JERS-1: 

1992-1998 

SIR-C: 1994 

X-SAR:

1994

Analysis 

performed 

at 25 m. 

Kuplich (2006) 

regenerating 

forest north of 

Manaus, Brazil 

Six forest classes at 

various stages of 

regeneration. Neural 

network classifier 

trained using ground 

data with 2 hidden 

layers.  

Both SAR and TM 

bands alone could 

distinguish pasture, 

regenerating forest 

and mature forest 

‘accurately’. For all 

six classes accuracy 

low for radar bands 

alone, but rises to 

70% with radar & TM 

together. 87% 

accuracy if 

regenerating classes 

lumped into two – 0-

5 years and 6-18 

years.  

MODIS, 

Quic-SCAT 

(Ku-band), 

ICESat 

Mid-2000s 

only, 

limited by 

operation 

of ICESat 

GLAS 

LiDAR. 

Analysis 

performed 

at 1 km 

Saatchi et al 

(2011), 

pantropical 

map of 

aboveground 

biomass (AGB). 

Divided global forests 

into 11 classes of 

differing biomass 

values. Put pixels into 

one of these classes 

using tens of 

thousands of GLAS 

LiDAR footprints, then 

extrapolated those 

using MODIS optical 

and QuickSCAT radar 

data, using a Maxent 

model. 

Error was 

determined on a 

pixel level, and 

varied between 6 

and 53% of the class 

value. Average 

relative error of 31% 

per pixel across the 

dataset, suggesting 

about a ~50% chance 

of putting a pixel in 

the correct of the 11 

classes, but a ~80% 

chance of putting a 

pixel in the correct or 

neighbouring class. 

However, biases in 

the input dataset 

suggests these may 

be overstatements of 

accuracy (Mitchard 

et al 2014).  

Optical/LiDAR Fusion 
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Landsat 

TM/ETM+, 

SRTM 

DEM, 

airborne 

LiDAR 

2000 for 

SRTM 

elevation 

1984-

present for 

Landsat 

TM/ETM+ 

Airborne 

LiDAR 

available 

on 

demand. 

Maps 

produced 

at 30 m, 

airborne 

LiDAR had 

a far 

higher 

resolution. 

Asner et al 

(2012), study 

site covers 

40% of 

Amazonian 

Peru. 

While not strictly 

comparable to other 

studies in this table as 

it uses aircraft LiDAR 

in addition to satellite 

optical data, it was 

thought useful to 

include an example of 

what can be achieved 

using LiDAR data 

fused with Landsat. 

AGB maps were made 

for small sections of 

the landscape based 

on aircraft LiDAR 

data, then scaled to 

the landscape using 

Landsat and elevation 

data and either a 

stratification or a 

regression based 

method. Landsat was 

converted to 

estimates of 

Vegetation Cover 

using CLASlite 

software.  

The stratification 

approach produced 

the highest accuracy 

when tested against 

independent 

(withheld) LiDAR 

data. It achieved an 

error of 33% of the 

mean carbon stock at 

a 30m resolution, 

falling to 24 % at the 

1 ha resolution 

(assuming the field 

plot data is ‘true’, i.e. 

ignoring errors from 

allometric 

equations). This 

suggests about a 50% 

chance of putting a 

pixel in the correct 

50 Mg ha-1 AGB class, 

lower at low biomass 

values and higher at 

high biomass values. 

LiDAR data alone (in 

areas where it was 

available) could map 

AGB with about 80% 

accuracy for a 0.28 

ha field plot.  
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From Table 2 it is clear that a wide range of satellite data are available that can map forest cover 

and forest types. In general more recent studies have higher accuracies, due to a combination of 

higher resolution satellite data and more advanced methods. Table 3 synthesises the data 

collected in Table 2, along with the opinion of the author based on experience working with 

these datasets, in order to assess the suitability of different satellite datasets and analysis 

methods for three tasks: 

- Forest/non-forest mapping (F/NF): the simple binary classification of a landscape into

these two classes, according to the local forest definition

- Simple within-forest stratification (SimpStrat), e.g. dividing forested areas into two

classes, e.g. ‘intact’ and ‘degraded’, or ‘forest’ and ‘woodland’

- Complex within-forest stratification (CompStrat), involving more than two classes.

Included here are consideration of studied that have mapped tree cover, tree height or

aboveground biomass continuously: such maps effectively provide the ability to separate

out many different forest classes, or indeed to use the full continuous distribution.

The ability of the data to perform these three tasks are given using these categories: 

- Not attempted: no peer reviewed publications were found that attempted this

- Unsuccessful: classification accuracy lower than 70% in studies found, making this

data/method unlikely to be useful for any users

- *: User’s accuracy of 70-80% found in studies – unlikely to be useful for most purposes,

but some potential

- **: User’s accuracy of 80-90 % found – likely to be useful in some circumstances, though

unsuitable for change detection between layers as is

- ***: User’s accuracy of >90% found in some studies – useful in many circumstances, and

potentially usable for direct change detection, with caveats.

The data layers in the table are ordered in ascending order of resolution. As discussed in 1.3, it 

should be noted that while accuracy is normally higher with higher resolution data, higher 

resolution data is in general more expensive to both collect and process, and is available at a lower 

frequency, than lower resolution data. 
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Table 3. Accuracy of satellite platforms for one-off forest and forest type mapping 

Satellite 

sensor 

Period 

operational 

Resolution Frequency 

and cost 

F/NF 

accuracy 

SimpStrat 

accuracy 

CompStrat 

accuracy 

Optical 

Hyperspatial 

e.g. IKONOS,

WorldView,

GeoEye

2000 – pres Pan: 

0.3–1m 

MS: 

1.2–4m 

On demand, 

up to daily. 

High cost. 

*** *** ** 

Corona (spy 

satellite) 

1962-1972 Pan: 2-3m Only 1-2 

observations 

ever over 

most of the 

tropics. Free 

** Not 

attempted, 

possible 

Not 

attempted, 

unlikely to be 

successful 

RapidEye 2009-pres 5m 5 days 

Medium cost. 

*** *** ** 

Sentinel-2 2016 – pres 10 m 5 days. 

Free 

*** 

(based on 

OLI 

results) 

*** 

(multi-

temporal, 

based on OLI 

results) 

** 

(multi-

temporal, 

based on OLI 

results) 

Landsat 8 OLI 

Landsat 7 

ETM+ 

2013 – pres 

1999 – pres 

(scan-line 

corrector 

failed 2003) 

Pan: 15m 

MS: 30m 

16 days. 

Free 

*** 1 image: 

*** 

Multi-

temporal: 

*** 

1 image: 

* 

Multi-

temporal: 

**
 

Landsat 4/5 

TM 

1984-2012 30 m 16 days, 

though often 

less frequent 

in practice. 

Free 

*** * *

Landsat 

1/2/3 MSS 

1972-1983 57 x 79 m 18 days. Free ** * *

MODIS 2000-pres 250m – 

1000m 

Daily, 16-day 

composites 

often used in 

practice. Free 

** * Multi-

temporal: 

* 

MERIS 

Sentinel-3 

2000-2012 

2016- 

300m Daily. Free ** * Multi-

temporal: 

* 

SPOT 4/5 

VGT 

1998 – 2014 1000m Daily. Free ** Unsuccessful Unsuccessful 

Synthetic Aperture Radar (SAR) 

X-band

TerraSAR-X

TanDEM-X

TerraSAR-X 

2007-pres 

TanDEM-X 

2010-pres 

From 1 m, 

normally 

3m. 

Normally HH 

only. 

Complete 

coverage of 

the planet 

completed 

once. Further 

data on 

demand. High 

cost. 

*** ** Not tested 

C-band Radarsat-1: 8 m 24 days ** * Unsuccess-
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Satellite 

sensor 

Period 

operational 

Resolution Frequency 

and cost 

F/NF 

accuracy 

SimpStrat 

accuracy 

CompStrat 

accuracy 

Radarsat- 1/2 1995-2013 

Radarsat-2 

2007-pres 

(HH) 

8 m 

(normally 

HH + HV). 

Medium-high 

cost 

(dual-pol) ful 

C-band

Sentinel-1

Sentinel-1a: 

2014-pres 

Sentinel 1b: 

2016-pres 

20 m 

(normal IWS 

mode, either 

HH/VV only 

or dual pol) 

8 days 

Free 

*** (single 

test in 

Germany) 

Unsuccessful using single 

images in German test site, 

no published tests 

elsewhere. May be possible 

especially with multi-

temporal data 

C-band ASAR 2000 – 2012 30 m 

(HH + HV) 

Infrequent, 

acquisitions 

** ** 

(dual-pol) 

Not tested 

L-band

ALOS-1/2

PALSAR-1/2

ALOS 

PALSAR: 

2006-11 

ALOS-2 

PALSAR-2 

2014-pres. 

12.5 m 

(normal FBD 

mode 

HH+HV) 

6.25 m 

(normal FBD 

mode 

HH+HV) 

Every 2-3 

months over 

most of the 

tropics.  Cost, 

though free 

annual 

mosaics 

produced at 

25m. 

*** ** 

Maybe *** in 

drier 

ecosystems 

with 

maximum 

AGB <150 

tonnes ha
-1

 

** 

L-band

JERS-1

1992-1998 20 m 

(normally 

used at 

100m) 

Variable. At 

least 2 

observations 

across 

tropics. Free 

*** ** * 

Data Fusion 

Radar/ 

Optical, e.g. 

Landsat L-

band SAR 

Possible from 

1990’s to 

present 

25-30 m Variable. 

Gaps in L-

band record 

1998-2007, 

2011-14. 

Free, except 

2014-pres. 

*** ** ** 

Radar/ 

Optical/ 

satellite 

LiDAR, e.g. 

MODIS, 

QuikSCAT & 

ICESat 

Mid-2000s, 

(limitation 

ICESat; 

similar data 

from GEDI 

will start 

2018) 

500 – 1000 

m 

One-off only 

as limited 

ICESat 

collections, 

all datasets 

free 

*** ** * 

Optical/ 

airborne 

LiDAR 

Present- 30 m Dependent 

on airborne 

Lidar. High 

cost. 

*** *** ** 

(*** possible 

where 

airborne 

LiDAR 

collected) 

From Table 3 it is clear that there are many datasets which can distinguish forest from non-forest 

with high accuracy (>90%). These include free 10 and 30 m resolution optical data (Sentinel-2 

and 
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Landsat), and free 20 m resolution radar data (Sentinel-1 and, only free for annual mosaics, ALOS 

PALSAR), as well as data at a higher resolution for a cost, and at a lower resolution for increased 

spatial coverage. Given the discussion of forest definitions in Chapter 2, it is apparent that the free 

datasets will be sufficient for monitoring the change in forest area in most situations. This does not 

mean that any of these datasets can automatically be used to track changing forest area through 

time: the error characteristics (errors of omission and commission) and any resulting biases still 

need to be considered when comparing maps produced using these methods at different points in 

time, as discussed in the next chapter. However, when analysed properly, any dataset given *** in 

the above table should be useable.  

Stratifying forest into two types is clearly a more challenging problem. The only free dataset to 

achieve *** here is Landsat OLI when analysed in a multi-temporal fashion, with it being likely 

(though unproven) that Sentinel-2 could be used in a similar way at a 10 m resolution. Applying 

such analysis methods in practice can be difficult due to cloud cover and data volumes, and 

multiple observations per year are rarely available pre-2013 (when Landsat 8 was launched), 

though are ever-more likely to be available as both Sentinel 2 satellites become operational. 

Sentinel-1, a C-band radar satellite, also offers potential in this regard when analysed in a multi-

temporal fashion, with an advantage over optical methods in that it is insensitive to cloud cover; 

however this has not been proven by any studies as yet. There are clearly a number of commercial 

datasets that can achieve this split, from high cost options such as the use of airborne LiDAR, 

through to the lower cost option of purchasing RapidEye data. It also appears that in lower 

biomass/drier ecosystems, L-band radar may be an option, for which free data is now free in the 

mid-90’s and from 2007-11, and with one free annual mosaic produced for 2014/15, though with 

no more free data guaranteed it may not be a cost-free option. 

Stratifying forest into more than two classes is clearly a very challenging task using current satellite 

technology. No satellite methods achieved >90% accuracy for this task in the literature review, 

with the single successful study (Asner et al 2012) only achieving this under the small areas where 

airborne LiDAR was collected. Recent developments in UAV LiDARs will reduce the cost of data 

collection (Esposito et al 2014, Gottfried et al 2016), but collecting data from airborne sensors and 

processing LiDAR data will always be expensive.  If such stratification is necessary then it will likely 

be necessary to pay for satellite data, of either high resolution optical or radar data, potentially to 

undertake some data fusion, and accept that accuracy is unlikely to exceed 90%, making change 

detection difficult. It is also clear from the literature review that accuracy decreases the more 

classes are considered, and that the classes that are easiest to distinguish from remote sensing 

data, for example based around different levels of canopy cover, may not be those required by 

users, which may for example relate to different species groupings. 
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3.2 Complementary datasets 

It should be clear from Table 3 that even separating forests into two classes (‘SimpStrat’) is 

challenging, and into more than two classes (‘CompStrat’) is more challenging still. In practice the 

difficult relates directly to the separability of the classes, with some likely to be easier to separate 

than others. Optical sensors see only the top of the forest canopy, limiting their ability to infer 

characteristics of forest structure (such as biomass, tree height, the presence of tree stumps 

indicative of disturbance). Although radar sensors may be more sensitive to such forest 

characteristics, the data is often expensive and there is more need for research in order to create 

optimal methods. Moreover, the accuracy of studies does not suggest radar can provide suitable 

stratification results as yet. In turn, LiDAR data, the optimal tool for forest stratification, is too 

patchy from satellite mounted sensors (only rare, isolated footprints from ICESat GLAS in the mid-

2000s are available) and expensive from aircraft/UAVs.  

There is therefore a role for using spatial datasets from other sources. Field data is one obvious 

option, but collecting sufficient field data to create good maps on its own is normally unfeasible, 

unless the study area is very small. Nevertheless, other ancillary datasets that may be useful exist, 

for example: 

- Vector layers of the road network and settlements (ideally with additional data on the

quality of each road and the population of settlements)

- Vector layers of rivers and elevation data (which provide access points, but proximity to

rivers may also indicate different forest types)

- Expert vegetation maps, based on long field experience

- Historical land cover maps, which may indicate vegetation history

- Topographic maps and DEMS

- Climate maps

- Soil and geological maps

The vector layers of roads and settlements are especially useful in mapping forest degradation, as 

this is likely to occur only where human access is possible. The difficulty is that in introducing such 

data the resultant map becomes more of a theoretical model than a scientific data layer, but if 

combined with good ground data, useful maps can then be produced. We do not know of cases 

where road data have been used directly to assist with forest stratification, but there is evidence 

that such an approach could be effective based on a study showing significantly different 

vegetation around abandoned and active roads in the Congo basin (Kleinschroth et al 2015).  

Rivers provide access to forests, being the predominant means of transport throughout much of 

the remaining large rainforest areas. Therefore, similarly to the argument above, we would expect 

differences in forests to associate with distances from rivers, and indeed that has been found 

(Imbernon & Branthomme 2001, Kumar et al 2014). Equally, forests near rivers may be very 

different from those in the surrounding area, as they may flood and have different soil and water 

availability characteristics (Hess et al 2015), aiding classification.  A Digital Elevation Model (DEM) 

may be useful in conjunction with a river map to predict how far the river’s influence may spread, 

and in general as vegetation does change with elevation (Frederick et al 2014). 

The use of historical landcover maps to inform forest stratification may be considered close to a 

change detection application, and belong in Chapter 4. However, it is a different approach, as a 

one-time map of vegetation characteristics (often age of regeneration) is derived from images of 

multiple time periods in the past. For example, Kimes et al (1998) reviewed this method and 

presented its strengths in terms of greatly increasing accuracy compared to using remote sensing 
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data from a single year, as well as weaknesses and biases due to the nefarious influence of missing 

data due to cloud cover, which can result in an over-estimate of forest age. It has been used 

successfully since, especially in temperate or boreal forests (e.g. in Oregon, Pflugmacher et al 

(2012)), but also in the Amazon where a strong dry season almost guarantees at least one cloud-

free Landsat scene per year (Espírito-Santo et al 2005, Etter et al 2005). However, such a method 

does have a cost in terms of the necessity of analysing many scenes to produce a one-time map, 

and also a limitation in that the maximum age of regenerated forest that can be established using 

this method is the same as the length of time between the oldest image and the more recent 

image. Theoretically this could be over 40 years if Landsat 1-3 scenes from the 70s are compared 

to present, but cloud free Landsat 1-3 scenes are rare, so typically the earliest good Landsat data is 

from the mid-1980s with Landsat 4 or 5, meaning a maximal chronosequence class of ‘>30 years’. 

There may be a very large ecological and carbon storage difference between forest of 30 years age 

and primary forest, so in many cases this will not be sufficient to produce a useful stratification. 

4 Change Detection Approaches 

The perfect detection method would provide frequent, accurate, high resolution, wall to wall 

coverage of the timing of forest disturbance events with high (and known) accuracy, along with 

information about the degree and type of disturbance, with guaranteed continuity and all at low 

cost. Even better, such a system would also detect and be able to map the presence and 

magnitude of forest growth. Unfortunately, this perfect solution does not exist.  

In this chapter we will first cover existing services, which provide some aspects of this system for 

deforestation monitoring. We will then consider what has been proven possible for change 

detection, considering both deforestation and degradation/regrowth monitoring, and assess the 

utility of different sensors and analysis systems for producing such results. Finally, we will look to 

the future and what could become possible with new sensors, either recently or soon to be 

launched, and using UAV/aerial data. 
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4.1 Current systematic deforestation products 

There are some services that provide aspects of the ideal system discussed above. For example the 

University of Maryland (UMD) product (Hansen et al 2013) provides annual global maps of 

deforestation at a 30 m resolution, though with a time lag (at the time of writing, October 2016, 

the latest layer available is for 2014). Alternatively, the terra-i and FORMA systems give more 

frequent (every 16 day) alerts of deforestation at a coarser resolution (250m and 500m 

respectively). The features and capacities of these systematically produced, free-to-use products 

are given in Table 4 . Note that all these datasets are attempting to detect total tree cover loss, 

none aim to detect degradation, though some may in fact detect more severe forms of 

degradation and report it as forest loss. 

Table 4. Existing systematic and open deforestation datasets 

1 Dataset 2 Coverage 3 Spatial 

resolution 

4 Data 

source 

5 First 

year  

6 Temporal 

resolution 

7 Maximum 

lag* 

8 Reference/ 

website 

Hansen/University 

of Maryland/ 

Google/USGS/ 

NASA (“UMD”) 

Global 30 m Landsat 

ETM+/ 

OLI 

2000 Annual 2 years (Hansen et al 

2013) website
3
 

Global Land Analysis 

and Discover (GLAD) 

alerts (from UMD) 

Brazil, Peru, 

Republic of 

Congo & 

Kalimantan 

30 m Landsat 

ETM+/ 

OLI 

2014 Dependent 

on cloud 

cover, from 

weeks to 

many 

months 

~2 weeks 

after 

detection, 

but longer 

for cloud-

covered 

areas 

(Hansen et al 

2016a) 

website
4
 

PRODES (produced 

by INPE, Brazil’s 

National Institute for 

Space Research) 

Brazilian 

Amazon 

60 m 

(minimum 

mapping 

unit 6.25 

ha) 

Landsat 

TM/OLI; 

CBERS; 

LISS-3; 

DMC-2 

1975, 

data 

available 

online 

from 2000  

Annual ~3 months (Camara et al 

2013, PRODES 

2016) website.
5
 

Terra-i Latin 

America 

250 m MODIS + 

TRMM 

(rainfall) 

2004 16 days ~2 months (Leisher et al 

2013) website
6
 

DETER (produced by 

INPE) 

Brazil 250 m MODIS 2004 Monthly ~4 months (Shimabukuro 

et al 2012) 

website
7
 

FORest Monitoring 

for Action (FORMA) 

Humid 

tropics 

500 m MODIS 2006 - 

2015 

16 days ~1 month, 

no data 

released 

since mid-

2015. 

(Hammer et al 

2014) website.
8
 

New 250m 

product to start 

soon. 

3 http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html 
4 http://glad.geog.umd.edu/alarm/openlayers.html 
5 http://www.obt.inpe.br/prodesdigital/cadastro.php 
6 http://www.terra-i.org/terra-i/data.htm 
7 http://www.obt.inpe.br/deter/dados/

8 http://data.globalforestwatch.org/datasets/550bd7fc2c5d45418e5e515ce170da22_3

http://earthenginepartners.appspot.com/science-2013-global-forest/download_v1.2.html
http://glad.geog.umd.edu/alarm/openlayers.html
http://www.obt.inpe.br/prodesdigital/cadastro.php
http://www.terra-i.org/terra-i/data.html
http://www.obt.inpe.br/deter/dados/
http://data.globalforestwatch.org/datasets/550bd7fc2c5d45418e5e515ce170da22_3
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*Defined here as the maximum wait from the end of the period considered to the data being made available. For 
example if data for deforestation in 2014 was provided in June 2016 that would be a 6 month lag, as the deforestation 

data period under consideration finishes 31
st

 December 2014.

Looking at Table 4 it is obvious that all entries use optical satellite data, and mostly from either the 

Landsat or MODIS satellites. The reason for this is largely that of data availability: to make change 

detection products one needs consistent data, ideally several times per year, and only optical 

satellites have provided that over the past decade. Traditionally the only products that can 

produce estimates with an update frequency smaller than a year have relied on medium 

resolution optical data, mostly MODIS: as this records everywhere on the planet 2-4 times per day, 

cloud-free images are pretty much guaranteed within the 16-day composites they produce. This 

results in a resolution trade-off, with the maximal 250 m resolution meaning that many 

deforestation events will never be detected as they are too small. The GLAD group have recently 

attempted to produce alerts using Landsat data at 30 m, and will soon role this out across the 

tropics, but the observation frequency suffers from cloud cover, as displayed in Figure 2 below: 

Figure 2. Potential and Cloud-free observations over Amazon Peru from Landsat 7 and 8 combined 

over an 18 month period 2014-15 (Hansen et al 2016a) 

The narrow stripes of increased scene availability in Figure 2 are from pixels that are on the 

overlaps between scenes. Both Landsat satellites are on the same orbit, repeating an identical 

sequence at an offset of 8 days.  

This cloud-cover limitation is severe in many areas of the tropics, and has led some to call for 

optical data to be dropped as the main way of monitoring deforestation and degradation in favour 
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of radar data, which is insensitive to cloud cover (Asner 2001). A lack of data availability has held 

back the use of radar data in such services, but this may be changing, as discussed later in this 

section. 

In some areas, it is clear that cloud cover will make it impossible to produce sub-annual or rapid 

response alerts. This is regardless of the increasing frequency of observations that has been 

triggered with, for example, the launch of the Sentinel-2 service, which should allow observations 

every 5 days (as opposed to every 16 for Landsat): that will improve matters, but some areas will 

remain cloudy continuously for months and no level of additional observations will help. Cloud 

cover will have less effect on annual products, though it may still cause changes to be detected 1-3 

years late, potentially giving a false picture of success of forest protection efforts after a cloudy 

year for example, and to be misattributed between years, making the mapping of trends and 

drivers more difficult (Hansen et al 2013). 

For the purposes of this review we have mapped the proportion of daily observations for which 

different areas of the tropics are cloud covered, based on averaging five years of data from 2010-

2014 from the MODIS cloud fraction data (NEO 2016) (Figure 3). This clearly shows that some 

areas may be highly suitable for regularly monitoring with Landsat data, with a high proportion of 

the ~44 Landsat observations per year being cloud-free. Whereas for some areas, achieving even 

one cloud-free image may be difficult (experience shows that in areas with >90% cloud cover every 

image in Landsat will typically contain at least some cloud cover, with cloud-free images only 

occurring every 2-3 years).  



3
2

 

Figure 3. Proportion of cloud cover for the global land surface at a 1 degree resolution, data from 

NEO (2016) for 2010-2014, processed by Mitchard 

We hope this figure may be useful in deciding whether using the optical based products listed in 

Table 4 could be best used, and where other products may be more suitable. For ease of access, 

this data layer is available to view at the accompanying website.9  

In particular the NW Amazon, west-central Africa, and Malaysia/Indonesia, appear to have >80% 

cloud cover and thus we would expect low availability of optical data. In these areas there is likely 

to be a significant delay in deforestation being detected by optical data due to a lack of availability, 

and the accuracy of detections are also likely to decrease as many areas will regrow in part before 

detection is possible. Custom products based on radar data or the specific targeting and purchase 

of optical data, maybe targeted to hotspots using systematic products based on coarser resolution 

optical data with daily revisits (e.g. FORMA), may be preferable to reliance systematic systems 

based on high resolution optical data (e.g. UMD, GLAD). 

9
http://cloudcover.ourecosystem.com. 

http://cloudcover.ourecosystem.com/
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4.2 Accuracy of systematic products 

A few studies that have attempted to assess the accuracy of systematic products, and some 

have published reports giving their own accuracy proportions. Table 5 gives the references and 

results of these studies. Errors for change data should, where possible, be reported as separate 

rates of omission and commission, and if not given, I have attempted to convert the numbers to 

these here. These rates are defined as: 

- Rate of omission: the proportion of total area of change in the reference data that is

reported as unchanged

- Rate of commission: the proportion of total area of change reported in the dataset that is

in fact unchanged according to the reference data

These terms are related to the user’s and producer’s accuracies discussed in Section 3, with a 

dataset having high Producer’s Accuracy for a change layer if the rate of omission is low (with 

either high or low errors of commission), and having high User’s Accuracy if rates of commission 

are low, even if there are high rates of omission. In fact, User’s Accuracy of the forest change class 

is the complement of the Rate of Commission (i.e. if the commission rate is 10%, the user’s 

accuracy will be 90%), and similarly the producer’s accuracy is the complement of the error of 

omission, but in this context the commission/omission rates are normally used as they are easier 

to interpret.  

Normally methods try to balance omission and commission errors, but there are some applications 

where one is more important than the other. For example, a rapid response product may prioritise 

reducing errors of omission, accepting that there will be false detections (errors of commission) 

but that these are better than missing disturbances as they happen. Conversely, a scientist wishing 

to take soil samples at sites cleared at different points in the past (in order to assess whether 

carbon is lost from the soil following deforestation), will prefer a dataset with a very low 

commission rate, as they wish to be sure the areas they visit have genuinely been cleared. As they 

are sampling the landscape, rather than estimating areas of change, they will not mind a high 

omission rate. But to obtain unbiased estimates of the area of change it is ideal to keep these 

errors as small as possible and as equal as possible.  

It is possible to use area-corrected estimates of these rates to produce confidence intervals on the 

changes detected within a specific area, and bias-corrected areas accounting for the balance of 

commission and omission errors (Olofsson et al 2013). Following this method is recommended by 

the GFOI’s Methods and Guidance Document when using these or other change datasets (GFOI 

2014). These are however area-specific, depending on the relative proportion of change and 

unchanged pixels in the area of interest, so cannot easily be given for the overall dataset.  
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Table 5. Accuracy estimates of deforestation detections in systematic datasets 

Dataset Rate of 

commission 

(complement 

of User’s 

Accuracy) 

Rate of 

omission 

(complement 

of Producer’s 

Accuracy) 

Test area and method Reference 

Hansen/ 

University  

of Maryland/ 

Google/USGS/ 

NASA (“UMD”) 

13 % 17 % Based on expert analysis of 628 120m x 

120m blocks across tropics against 

Landsat or Google Earth imagery. Only 

gain/loss assessed, not year of change. 

(Hansen et al 

2013) 

25 % 35 % Independent test against RapidEye Data 

for two sites of high forest change in 

Acre and Rondonia 2010-14.  

Milodowski et 

al (2016) 

unpublished 

results from UK 

Space Agency 

study 

Global Land 

Analysis and 

Discover (GLAD) 

alerts (from 

UMD) 

13 % 33 % Tested in Amazonian Peru using Google 

Earth data. NB most of the commission 

errors were on the boundaries of 

events. Ignoring these commission 

errors reduce to 4%, though omission 

errors remain at 30 %.  

(Hansen et al 

2016a) 

PRODES 

(produced by 

INPE, Brazil’s 

National Institute 

for Space 

Research) 

36 % 49 % Independent test against RapidEye Data 

for two sites of high forest change in 

Acre and Rondonia. Test may be unfair 

as forest and deforestation definitions 

not equivalent 

Milodowski et 

al (2016) 

unpublished 

results from UK 

Space Agency 

study 

0 % 9 % Independent test against RapidEye data 

conducted by Celestral Green Ventures 

for the Trocano Aratama Conservation 

Project, Brazilian Amazon 

Viergever and 

Morel (2014) 

Terra-i No validation figures available 

DETER (produced 

by INPE) 

No validation figures available 

FORest 

Monitoring for 

Action (FORMA) 

21 % (30 % 

threshold); 

13 % (50 % 

threshold) 

7 % (80 % 

threshold) 

87 % (30 % 

threshold); 

90 % (50 % 

threshold) 

92 % (80 % 

threshold) 

Figures for 2007-2010 period, using 

PRODES as ‘truth’ (reasonable given 

coarser resolution). The very high 

omission errors are not a mistake: the 

algorithm is purposefully biased to 

avoid false positives, but this means it 

misses most events in the training data. 

Thresholds correspond to confidence of 

output – 30% is normally used. 

(Hammer et al 

2014) 
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Based on Table 5 it is clear that more validation data are needed. The GFOI MGD Module 2 (GFOI 

2015), which will be fully incorporated into Version 2.0 of the MGD which will be published later in 

2016, recommends that if these systematically-produced datasets are used as part of a country’s 

MRV framework they are validated using either field data or the analysis of time series of very high 

resolution remote sensing data. Such local validation data can provide estimates with confidence 

intervals and corrected for bias (Olofsson et al 2013). 

Using the generic validation data that is there it is clear that the UMD data features fairly well 

balanced errors of omission and commission, maybe with slight preference for keeping errors of 

commission low (i.e. reducing the rate of false positives), at the cost of slightly greater errors of 

omission. As would be expected, the GLAD data, which provides recent alerts of deforestation, has 

much higher omission errors than the UMD data, though manages to keep commission errors low. 

PRODES appears to have similar characteristics to UMD (a slight tendency for higher omission 

errors than commission errors), but with higher absolute errors – however our only test may not 

be fair as it uses a high resolution dataset and a different deforestation definition (counting all 

forest loss a deforestation, even if it occurred in areas that have previously been deforested, 

whereas PRODES will only detect areas as deforested if they start as forest that has never been 

cleared, with a minimum clearing size of 6.25 hectares).   

The MODIS-based datasets are poorly assessed, but the only one tested, FORMA, has similar (if 

more extreme) error characteristics as GLAD, the Landsat-based rapid response dataset. It has a 

strong bias towards minimising errors of commission, with the result that it has very high errors of 

omission, missing over 87% of clearances in a test dataset. This incredibly high omission error, 

which is due to a combination of its coarse resolution as well as a bias in the algorithm to prevent 

false positives, may make the data useless for many monitoring purposes, but the low commission 

errors mean that the alerts it triggers can be trusted potentially making it a useful enforcement 

tool. As indicated in the discussion on cloud cover in the Section 4.1, MODIS-based detection tools 

could also be used to highlight hotspots of rapid change within a country, for investigation using 

commercial optical satellite data, UAV data, radar, or simply a ground visit.  

4.3 Change detection methods 

The systematic deforestation products above use three different methodologies. Firstly, PRODES 

uses a semi-automated classification method, involving a method of classification close to the one-

time methods described in Section 3, with operators helping to decide if objects have changed 

based on a single best observation for each year. Secondly, FORMA, DETER and Terra-I use a 

statistical time series approach based on many observations per year, looking for pixels that 

deviate from a long term trend in a single vegetation index band. Finally, the UMD and GLAD 

datasets use bagged decision trees trained by an input dataset of thousands of pixels that have 

and have not undergone change, but not specifically hard-coding how the algorithm should 

consider the different available wavelengths. Note that these products use 4 Landsat bands in 

addition to vegetation indices derived from them, and correct them for atmospheric and angle 

effects in advance of considering them).  All forest change products, including more experimental 

products described in 4.4, are based on these three basic methods: comparing one-time maps; 

analysing time series looking for statistically-significant differences; and machine learning 

approaches where the actual trigger for a detection is left to the computer. However, there is 

significant variation within these methodologies when using the same sensor, and of course 
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significant variations in what is achievable comparing on the precise sensor used. These methods 

are described in more detail below. 

1. Comparing one-time layers: in this method, processed layers, normally classifications (e.g.

with classes such as forest/non-forest; primary forest/secondary forest/agriculture; etc) or

more rarely continuous layers (e.g. canopy cover, AGB), are compared for multiple points

through time. As discussed in Section 3, there are significant difficulties with this method

related to the accuracy of the input layers. This is because classifications rarely have

accuracies much above 90%, which means that achieving significantly low errors of

omission and commission to accurately estimate trends in deforestation (which normally

has annual rates on the range of 0.5 – 2 %) is difficult, as described below (Lu 2004).

Nonetheless, this is the method used in practice by most voluntary-sector deforestation

projects (e.g. under the Verified Carbon Standard, VCS (Conservation International 2013)),

and is the basis of most Activity Data submitted by national REDD+ programs (Johnson et

al 2016).

In order for this method to be successful, it is important to assess the accuracy of the 

change results, rather than report the accuracy of the individual annual products. This is 

stated as essential by the GFOI MGD (GFOI 2014), the main advisory document produced 

for the use of national statistical processes aimed at the wider UNFCCC process, including 

REDD+, and is the view of many researchers. The relationship between the accuracy of 

individual layers and the change products that result from comparing these layers is not 

simple, and the accuracy of the change product cannot be determined without separate, 

specific change validation data. The change product can be both more and less accurate 

than would be expected from the accuracy of the individual layers. For example, if a set of 

sequential forest/non-forest maps each have an accuracy of 90%, but with errors 

randomly distributed in space, then differencing each will likely produce estimates of 

deforestation and reforestation of about 10%, in each direction, between each map, even 

if no forest change has actually happened. In this case, it is clear that the errors of 

commission and omission in the change product will be high. If, on the other hand, the 

maps had very similar error characteristics (for example reporting a particular swampy 

area of the landscape as forest, when it was in fact non-forest), then they might be very 

sensitive to deforestation elsewhere in the image, with very low commission and omission 

errors.  

The above thought experiment contains two lessons, which are borne out in the literature. 

Firstly, it is imperative to collect change validation data, that is to say validation data 

where the classes are ‘unchanged’ and ‘changed from land cover A to B (or vegetation 

characteristic A to B)’, rather than validation data that is ‘land cover A’ or ‘vegetation 

characteristic A’ from a particular point in time. Often it is impossible for these validation 

data to come from field studies. This is because it is impossible to go back in time,  

deforestation rates can be slow so plots set up at the first time point (if it has been 

possible) will mostly be unchanged, and if deforested areas are visited at time 2 it can be 

very difficult to say when the area was disturbed. Instead, it is often necessary to use 

higher resolution remote sensing datasets to perform the validation, and although this 

should be sufficient (GFOI 2014), it introduces further uncertainty as this ‘remote sensing 

based validation change dataset’ will be itself unvalidated. Secondly, it is best if the 

products to be compared are produced using the same sensor and method (or as similar a 

sensor as possible), with the data collected in as similar conditions as possible (i.e. same 
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time of year, same look angle, after a similar amount of precipitation, etc). This will not 

necessarily increase the accuracy of the individual products, but should mean they are 

most likely to suffer from the same errors and biases, thereby increasing the accuracy of 

the resulting change products. 

2. Time series analyses: in this method a series of observations of the same parameter

(normally a vegetation index) are compared, with an algorithm attempting to distinguish

departures from the normal that indicate deforestation or degradation. Normally, and

ideally, such time series include many observations per year, but the analysis can be

performed with only a few observations overall. In the latter case, the ratio or difference

of vegetation index values can be subjected to a threshold in order to mark pixels as either

changed or unchanged (e.g. Coppin & Bauer 1994), whereas if a long time series is

available the algorithms focus on finding break-points in a time series (Schultz et al 2016).

Such time series for a single pixel naturally vary due to seasonal effects, differences in the 

satellite sensor calibration, atmospheric conditions, and random error (see Figure 4 for a 

simulated example). Algorithms are therefore developed that try to distinguish a either a 

sudden break-point (for example due to a deforestation/degradation event) or a long-

term trend (indicative say of forest regrowth), from the natural variation not indicative of 

a change in the forest’s characteristics. There is a large branch of applied mathematics 

dedicated to finding signals in noisy time series data which are used in many other 

applications than just forest monitoring, and therefore a wide range of algorithms are 

available. However, their testing in tropical forest situations is not that extensive, probably 

held back by the only recent development of dense time series of freely available remote 

sensing data, the enhanced availability of high performance computing, and a lack of 

ground data. This is an active area of research and both algorithms and results are 

improving all the time. 

One widely used time series detection algorithms is BFAST (Breaks for Additive Season and 

Trend), which was developed at the University of Wageningen and has led to an open 

source R package10. This concentrates on trying to distinguish between the seasonal 

component of a time series and any trends or break points, which might correspond to 

deforestation or degradation. A more complex approach is used by Terra-I, which uses a 

neural network trained using both greenness and rainfall trends to attempt to find pixels 

that go outside expected ranges, and therefore likely to be deforestation (Leisher et al 

2013).  

10 http://bfast.r-forge.r-project.org/

http://bfast.r-forge.r-project.org/
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Figure 4: Simulated time series data. Degradation occurs to pixels 1 & 2 only on day 216. 

In the simulated data shown in Figure 4 above, observations of the Normalised Difference 

Vegetation Index (NDVI, a standard measure of greenness with higher values 

corresponding to denser, healthier vegetation) are shown every 16 days. Cloud cover is 

ignored; it is assumed that an observation is achieved in each satellite pass, and that the 

data are corrected as far as possible for atmospheric effects. Four pixels are considered, of 

which two undergo degradation around day 140 (pixels 1 & 2), and the remaining two 

have no change. A seasonal cycle can be observed, giving highest values around day 100, 

and lowest around day 280, and there is also significant random scatter on all 

observations. A good algorithm would pick up the persistent lower values around the 140-

180 day mark in pixels 1 and 2, either by comparing their values to the majority of the 

dataset up to that point (searching for outliers), or by comparing the pixels to their 

trajectories over previous years. It is clear, however, that a relatively naïve algorithm could 

easily either report all pixels as changing since all values fall to similar levels during the 

height of the dry season towards the end of the year, or otherwise miss all changes by 

requiring too harsh a threshold. In this example, which is not unrealistic, it is also obvious 

that a high frequency of observations is necessary to make a detection. Observe that there 

are only four detections where the difference in pixel values is significantly larger than the 

normal noise, and probably at least two of these low values detected in a row would be 

required for an algorithm to trigger a detection. An observation frequency less than 

monthly would be unlikely to result in a detection in this example, even if there was no 

cloud cover. 

3. Machine learning: time series analyses can theoretically involve multiple bands, but most

often only a single parameter thought to relate most strongly to the characteristic of

interest (often canopy cover) is considered. When multiple observation bands or metrics

are used it is common to move beyond deterministic algorithms, that is to say algorithms

conceptualised and hard coded by scientists, to machine learning (or ‘black box’)

algorithms. These are normally variations on neural network or regression tree
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approaches, in which a set of input data is used to train a neural network consisting of 

many virtual neurons, linked in several layers to loosely mimic the way the brain learns 

and processes information. The ‘strength’ of each neuron, or the probability of it being 

used, is changed during training in order to achieve the best output results. This approach 

has been used in remote sensing mapping for a long time (Foody et al 2001), and is the 

basis for many computer services in the modern world, from powering Google searches 

and self-driving cars, through to beating the world champion at Go (Silver et al 2016).  

Training a neural network can be computationally very expensive, as a vast parameter-

space needs to be explored. While a neural network classifier can easily be implemented 

on a standard desktop for a classification involving a few scenes and training data of a few 

thousand pixels, as soon as large training datasets or many scenes are included, a server or 

set of servers become necessary. However, once developed, neural networks are 

computationally easy to run, and can be implemented by more portable hardware. For 

example, the Hansen et al. (2013) product used a bagged neural network classifier 

approach, whereby a number of neural networks are developed and the consensus view 

of the outputs of the neural networks for each pixel is the output. These neural networks 

were developed with an unspecified but large number of training pixels (hundreds of 

thousands of pixels) involving ~500,000 CPU-core hours for training. The resulting neural 

networks were implemented across 650,000 Landsat 7 scenes (a total of 20 terapixels of 

data) using about the same number of CPU-core hours. 

The strengths and weaknesses of machine learning are closely connected. By not being 

constrained by a human being’s preconceptions of how the data layers should relate, 

better accuracies are normally achieved by machine learning. Patterns in multi-

dimensional space are difficult for humans to notice or conceptualise, but are easily 

detected in the training dataset by such methods. However, this feature also leads 

networks to overfitting, where patterns in the training data are picked up by the algorithm 

that are in fact specific features of the dataset itself, and not generalizable to the real 

world.  

As an example, a classic thought experiment of overfitting comes from a neural network 

being used to attempt to determine from pictures whether or not patients were suffering 

from the common cold. The computer was fed a 100 images, 50 of those with colds, and 

50 of those without. It so happened that in the small sample size those with colds were 

more likely to be wearing glasses than those that were not, and as a result the classifier 

when tested started stating that every image it was given where someone was wearing 

glasses had a cold. In this case, the problem was easy to spot, the test data could be 

adjusted, and a better model produced, but with a satellite dataset of many bands across 

hundreds of observations, it can be far more difficult to detect overfitting. Overfitting is 

most often guarded against by keeping a large proportion of the training dataset back for 

testing, and checking for any significant deviance in training and testing accuracy rates, 

and fixed through better optimisation (Deng et al 2013), but remains a significant 

challenge in remote sensing where ground truth datasets may have significant spatial or 

methodological biases. For example,  see Mitchard et al's (2011a) criticism of the first AGB 

map of Africa (Baccini et al 2008) which, while groundbreaking, was significantly 

overfitted, resulting in large errors away from the training dataset locations).  
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Finally, the interpretation of results and analysis of their error characteristics suffer 

through their being black boxes. Some methods, such as Random Forests, do provide an 

indication as to which input data layers are most important, but not the way in which 

these data are used; others, such as bagged neural networks, are so complex that it can be 

hard to unpick even which data layers are most important, let alone what they are being 

used for. In some ways, this does not matter: the results can be tested using independent 

data and errors and biases assessed. Yet, if the input data are spatially biased, or input 

layer characteristics change in the future (due to, for example, the replacement of a 

satellite, or an artefact appearing in a particular dataset), it can be impossible to predict 

the effect on the results. In contrast it is much easier to predict (and thus correct) the 

influence of changing input characteristics on one-time maps and time series approaches 

described above.  

In order to compare and contrast the type of results that are possible from different combinations 

of satellite datasets and the above methods, Table 6 presents a review of various studies that 

have attempted to map deforestation, degradation, or the direct change in some vegetation 

parameter (for example above ground biomass, AGB). 
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Table 6. Satellites and studies used for mapping deforestation 

Sensor, 

period, 

resolution 

Aim of 

change 

detection 

Approach Study and site Method Accuracy 

assessment of 

change* 

Optical 

Sensors: 

Landsat 

MSS/TM/ETM+/ 

OLI 

Period 

available: 

1972-present 

Resolution: 

15 – 60 m 

Sensors: 

Landsat 

MSS/TM/ETM+/ 

OLI 

Period 

available: 

1972-present 

Resolution: 

15 – 60 m 

Deforestation Comparing 

one time 

maps 

Huang et al (2009) 

forest cover 

change in 

Paraguay 

Used MSS, TM 

& ETM+ to 

develop change 

data from 1973 

to 2001. 

Mapping done 

using 

unsupervised 

pixel clustering 

and visual 

labelling of 

clusters.  

Accuracy >92% 

for thematic 

classification in 

2000s, tested 

using aerial 

photos and <5m 

resolution 

satellite data. No 

assessment of 

change accuracy 

performed. 

Deforestation Comparing 

one time 

maps, 

semi-

automated 

Alves (2002) 

deforestation in 

the Brazilian 

Amazon 1972-

1997 

Used 

deforestation 

maps provided 

by INPE from 

manual 

interpretation 

of MSS & TM.  

No accuracy 

assessment 

attempted, 

though 

comparison to 

census data 

showed most 

deforestation 

occurred in 

medium and large 

farms. 

Deforestation Comparing 

one time 

maps 

Song et al (2015) 

Central Brazil 

(covering parts of 

Mato Grosso, 

Tocantins & Para). 

Forest cover at 

each time 

period mapped 

directly using 

an SVM 

approach for 

TM and ETM+ 

data over 10-

year separation 

periods.   

Commission 

errors:  

12% (TM-TM); 

28% (TM–ETM+) 

Omission errors: 

22% (TM-TM); 

10% (TM–ETM+) 

Deforestation Time 

series. 

Coppin and Bauer 

(1994) Minnesota, 

USA 

Direct-

differencing of 

vegetation 

indices using 

TM data at 2-, 

4- and 6-year

separation.

100% success rate 

at detecting at 

least some 

change in 714 

forest stands 

>1ha in size

where change

reported on the

ground. Overall

accuracy against
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Sensor, 

period, 

resolution 

Aim of 

change 

detection 

Approach Study and site Method Accuracy 

assessment of 

change* 

Landsat 

ground data of 

93-97%, but that

includes both

unchanged and

changed pixels.

Deforestation 

and forest 

gain 

Machine 

learning 

Hansen et al 

(2013) – global 

map of forest 

change 2000-2013 

Bagged 

regression tree 

using complete 

Landsat 7 

(ETM+) archive, 

trained using 

visual 

interpretation 

of high 

resolution 

data. 

Deforestation: 

Commission 

error: 13% 

Omission error: 

18%  

Forest gain: 

Commission 

error: 18% 

Omission error: 

52% 

(see Table 5 for 

independent 

accuracy 

assessment of 

deforestation) 

Deforestation 

and 

degradation 

Comparing 

one time 

maps 

Margono et al 

(2012), mapping 

deforestation and 

degradation for 

the whole island 

of Sumatra, 

Indonesia, from 

1985 to 2011.  

One-time maps 

of forest cover 

were produced 

for ~1990, 

2000, 2005 and 

2010, but data 

from past time 

periods was 

used to assist 

with the 

classification at 

each point.  

Deforestation: 

Commission 

error: 29 % 

Omission error: 

44 % 

Degradation: 

Commission 

error: 18 % 

Omission error: 

10 % 

Degradation 

(selective 

logging) 

Comparing 

one time 

maps 

Matricardi et al 

(2005), mapping 

degradation in 

Mato Grosso 

state, Brazil. 

Compared 

manual and 

semiautomated 

methods for 

detecting 

deforestation 

and 

degradation, 

looking for 

features in the 

data at highest 

resolution that 

correspond to 

canopy 

Manual 

(deforestation & 

degradation 

combined): 
Commission error: 

1.5 % 

Omission error: 26.5 

% 

Semi-automated 

(deforestation & 

degradation 

combined): 
Commission error: 

18.9 % 
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Sensor, 

period, 

resolution 

Aim of 

change 

detection 

Approach Study and site Method Accuracy 

assessment of 

change* 

openings, 

especially using 

texture. 

Omission error: 19.1 

% 

(assessed using 

IKONOS imagery 

and a field study) 

Deforestation 

and 

degradation 

Time 

series: 

trajectories 

Kennedy et al 

(2007), discovering 

date of 

deforestation and 

degradation within 

dense stack of 

Landsat data, tested 

in Oregon, USA 

18 Landsat TM 

data from 

1985-2004 are 

subjected to a 

trajectory-

based time 

series analysis, 

trying to match 

given 

trajectories (no 

change, 

disturbance, 

disturbance + 

regeneration 

etc) to 

observed pixel 

dynamics.  

Deforestation: 
Commission error: 

14 % 

Omission error: 23 

% 

Degradation: 
Commission error: 

21 % 

Omission error: 39 

% 

Deforestation 

and 

degradation 

One-time 

maps 

Asner et al (2009) 

tests CLASlite 

software in 900 

km
2
 of the 

Peruvian Amazon 

and 3000 km
2
 of 

the Brazilian 

Amazon in Pará 

state.  

Using the 

Carnegie Landsat 

Analysis System 

(CLASlite) 

package to 

create 

continuous maps 

of 

photosynthetic 

vegetation, non-

photosynthetic 

vegetation 

percentage and 

bare ground, and 

difference these 

to trigger the 

detection of 

deforestation or 

‘forest 

disturbance’ 

(degradation) if 

certain pre-

determined 

thresholds 

breach.   

The method 

produces good 

looking maps, but 

no accuracy 

assessment was 

performed. A study 

using the same 

method over Peru 

found these errors 

for deforestation 

due to small gold 

mining operations 

(<5 ha) (Asner et al 

2013) 

Commission error: 

18 % 

Omission error: 15.7 

& 

Multiple Deforestation 

and 

Comparing 

one time 

Ravindranath et al 

(2012), mapping 

While not clear 

on the method, 

this study 

No accuracy 

estimate is 



44 

Sensor, 

period, 

resolution 

Aim of 

change 

detection 

Approach Study and site Method Accuracy 

assessment of 

change* 

degradation maps forest area and 

rates of 

deforestation and 

degradation in 

India for REDD+ 

presents 

deforestation 

and degradation 

figures for India 

based on a 

collation of 

state-level 

figures on the 

area of forest 

within three 

different canopy 

cover classes 

(>70%, 40-70%, 

10-40%).

attempted, but 

total areas of 

deforestation and 

degradation are 

given with high 

precision.  

MODIS 

2000-present 

250 m 

Degradation 

(selective 

logging) 

Time series Koltunov et al 

(2009), 670,000 

km
2
 of Mato 

Grosso in Brazil 

MODIS 16-day 

nadir-corrected 

composites. 

Cloud-free time 

series 

generated for 

pixels that have 

and have not 

undergone 

logging.  

Not formally 

tested, but 

suggested even 

minor logging 

(reducing canopy 

cover by 5-10 %) 

can have a 

significant and 

long-term effect 

on phenology, 

that is the long-

term pattern of 

greenness, 

allowing 

degradation to be 

inferred after a 

time-lag of 1-2 

years. 

Synthetic Aperture Radar (SAR) 

ALOS PALSAR 

2006 – 2011 

12.5 m 

Deforestation 

and 

degradation 

Time series (Joshi et al 2015) An algorithm 

was set up to 

detect change 

based on 

finding 

persistent 

reductions in 

radar 

backscatter, or 

short-lived 

changes if in 

pixels that 

neighboured 

others that had 

undergone 

Omission error:  

37% (estimated 

from expert 

analysis of high 

resolution data 

covering 2740 

pixels over farms) 

15% (estimated 

from ground data 

of permits to log 

within Brazil nut 

concessions), 

Commission 

error: untested. 
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Sensor, 

period, 

resolution 

Aim of 

change 

detection 

Approach Study and site Method Accuracy 

assessment of 

change* 

change. 

Deforestation Time series Collins and 

Mitchard (2015) 

A biomass map 

is made for 

2007, and then 

deforestation 

mapped 

through 

detecting large 

reductions in 

backscatter in 

subsequent 

annual images 

(2008-10).  

No validation data 

available. Internal 

uncertainty 

estimates 

produced on 

change estimates 

of total carbon 

stocks, at 

approximately 

±25% of the total 

change value.  

Deforestation, 

degradation 

and regrowth 

Comparing 

one time 

maps 

Ryan et al (2012) 

mapping 

deforestation and 

degradation in 

Miombo 

woodland from 

central 

Mozambique 

Maps of 

biomass, with 

uncertainties, 

were produced 

and 

differenced for 

each of 10 

radar scenes 

from 2007-10, 

allowing 

landscape-scale 

estimates of 

biomass 

change, and 

the location of 

deforestation, 

degradation 

and regrowth 

with 

confidence 

values.  

Omission error: 

35% (generally at 

the edge of 

ground-based 

polygons) 

Commission error 

not calculated, 

but false positive 

rate estimated at 

0.005 %/yr from a 

large area known 

not to have 

changed.  

JERS-1 

1992-1998 

20m 

ALOS PALSAR 

2006 – 2011 

12.5 m 

Deforestation, 

degradation, 

woody 

encroachment 

Comparing 

one time 

maps 

Mitchard et al 

(2011b), 15,000 

km
2
 region 

including and 

surrounding 

Mbam Djerem 

National Park, 

Cameroon 

Direct 

regression 

between field 

biomass plots 

and HV 

backscatter 

used to classify 

landscape into 

biomass 

classes: 0-50, 

50-100, 100-

150, >150

At 500m 

resolution, a 

simulation model 

suggested change 

data accurate to 

>95% when

describing if or

not a 500 m pixel

had changed

class. Results also

appeared to

qualitatively
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Sensor, 

period, 

resolution 

Aim of 

change 

detection 

Approach Study and site Method Accuracy 

assessment of 

change* 

tonnes ha
-1

. 

Change 

between these 

classes were 

mapped 

between 1996 

and 2007. 

match high 

resolution optical 

findings and field 

observations. No 

formal 

assessment of 

change was 

possible due to a 

lack of mid-90’s 

field data. 

ALOS PALSAR 

2007-10 

L-band, HH&HV

ENVISAT ASAR 

C-band

2000-2012

Degradation 

and 

deforestation 

Comparing 

one time 

maps 

De Grandi et al 

(2015), Deng Deng 

National Park and 

surrounding area 

in central/eastern 

Cameroon, along 

rainforest/savanna 

boundary. 

One time maps 

of intact forest, 

degraded 

forest, savanna 

and agriculture 

were 

attempted 

using texture 

for C-band and 

L-band radar

separately, and

then compared

through time.

The method was 

highly successful 

at C-band, but 

gave no 

discrimination 

abilities at L-band. 

No validation of 

maps was 

undertaken, but 

the method 

showed potential.  

LiDAR 

Airborne LiDAR Change in 

aboveground 

biomass, to 

detect 

regrowth, 

deforestation, 

degradation 

Comparing 

one time 

maps 

Meyer et al 

(2013), detection 

biomass dynamics 

im Barro Colorado 

Island, Panama  

(i) biomass

maps created

from two

different LiDAR

datasets

separated by

10 years and

differenced.

(ii) differences

in height from

the two LiDAR

maps mapped

directly

Both methods 

had large errors 

when attempting 

to measure 

biomass change. 

Errors decreased 

significantly at the 

10 ha scale or 

greater, but only 

only 60 % of 50 x 

1 ha plots were 

given the correct 

change direction 

(positive or 

negative). 

Data type fusion 

Landsat and 

ALOS PALSAR 

Deforestation 

and 

degradation 

Time series Reiche et al (2013) 

detect small-scale 

deforestation and 

degradation in 

Guyana 

Time series 

features are 

extracted from 

SAR and optical 

data, then 

The results are 

better than optical 

or SAR alone, with 

the optical data 

improving 
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Sensor, 

period, 

resolution 

Aim of 

change 

detection 

Approach Study and site Method Accuracy 

assessment of 

change* 

combined 

using a 

decision tree 

approach. 

resolution, whereas 

the SAR data fills in 

data gaps in 

space/time. For the 

combined product: 

Deforestation: 

Commission error: 

10 % 

Omission error: 12 

% 

Degradation: 

Commission error: 

22 % 

Omission error: 2.5 

% 

* Errors of commission and omission are given where provided. Error estimates given are from the

source paper cited unless otherwise stated.
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It is clear from Table 6 that the mapping of forest change is less advanced than the mapping of 

forest characteristics (Table 3), with generally lower accuracies and fewer cases where the 

mapping has been tested against independent data. Therefore, no attempt is made here to 

summarise Table 6 at this stage. Instead, Section 5 will look to the future, considering emerging 

technologies and methods, and then the two will be combined in Section 6 to provide guidance on 

optimal methods for different change applications. 

5 Emerging technologies for forest and forest change mapping 

5.1 Next generation satellite sensors 
It can be seen from the literature presented so far that the past decades of forest change mapping 

have been dominated by the Landsat satellite series (with data from 1972-present and the 

majority of studies), with some contributions from MODIS (a sensor with similar characteristics to 

Landsat, but a coarser spatial and higher temporal resolution) and L-band radar satellites (JERS-

1/ALOS PALSAR/ALOS-2 PALSAR-2, the longest wavelength radar satellites ever orbited, collecting 

data between them with gaps from 1992 - present). However, this will fundamentally change in 

the coming decade. There are a set of new sensors collecting data in optical, radar and LiDAR 

domains with their missions targeted either specifically or partially with forest monitoring in mind, 

and they represent either incremental improvements on what is currently available, or whole new 

data types that are not currently available. Those expected to be most significant are shown in 

Table 7, but this is not an exhaustive list of the new sensors that will become available over the 

coming decades. 

Table 7. Next generation satellite sensors for forest monitoring 

Name Years 

operational 

Type Spatial 

resolution 

Repeat 

time 

Data 

policy 

Closest current 

equivalent 

Sentinel 2 2016-2030s Optical, 13 

band 

10 m 5 days Open Landsat 

Sentinel 3 2016-2030s Optical, 21 

band 

300 m 1 day Open MODIS/MERIS 

Sentinel 1 2015-2030s C-band radar 15 m Up to 6 day 

NISAR 2020-22 S-band

L-band

radar

10 m 12 day Open ALOS PALSAR 

BIOMASS 2021-2025 P-band radar 50 m 

(biomass 

product 

200m) 

6 months 

(but 3 

images 

captured 3 

days apart) 

Open none 

GEDI 2018-? Spaceborne 

LiDAR 

25 m 

footprints 

Annual Open ICESat GLAS 

(2002-9) 
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One of the most exciting things about this collection of satellites is that in all cases the data policy 

is open, even for commercial use. There has been a general trend for government funded data to 

be made open access across countries, and it is excellent that this trend has spread to include 

satellite data. The potential of each of these new satellites will be discussed in turn. 

Optical: 

Sentinel 2: this pair of satellites, like all the Sentinels, is funded by the European Union but built 

and operated by the European Space Agency, with a commitment to continue providing similar 

data into the 2020’s. It is, effectively, an evolution of the Landsat concept, offering far higher 

revisit frequencies (5 days rather than 16 days11) and resolution (10 m rather than 30 m). This will 

enable better time series analysis of forest characteristics (using phenology) and change than is 

possible using Landsat, and make an especially big difference for areas of medium-high cloud 

cover where obtaining several 10 m resolution images per year will become likely, whereas 

obtaining one 30 m resolution image was not guaranteed under the previous regime. 

Sentinel 3: Sentinel 3 is less revolutionary than Sentinel 1/2, providing systematic medium 

resolution optical data at a similar temporal and spatial frequency to MODIS, and follows a similar 

design and capabilities to ESA’s MERIS sensor that operated from 2000-2012. Sentinel 3 is included 

here because it will be widely used for forest monitoring, and is likely to take over from MODIS as 

the medium resolution platform of choice. This is for two reasons: firstly its spatial resolution is 

higher than most MODIS bands (only the red and near infra-red bands of MODIS are 250 m, with 

the others being 500 m or 1000 m, whereas all 21 Sentinel 3 bands are 300 m resolution). 

Secondly, because no successor is funded to the two satellites that carry the MODIS instrument 

(Terra and Aqua), and both are operating far beyond their expected lifetimes (they were launched 

in 2000 and 2002 with nominal 7 year missions), and though both are behaving normally they will 

eventually fail.  

Radar: 

The missions discussed here are presented in order of increasing wavelength. C-band has a 

wavelength of about 6 cm, S-band about 12 cm, L-band around 24 cm, and P-band about 60 cm. 

With increasing wavelength the penetration of the canopy increases, meaning the backscatter 

relates more to aboveground biomass and less to the roughness of the canopy, increasing their 

utility for directly mapping biomass.  

Sentinel 1: prior to Sentinel 1’s launch in 2014, all radar satellites were essentially experimental. 

Some ESA missions (ENVISAT ASAR, ERS-1/2) had attempted to provide systematic ice monitoring 

using radar C-band, but there were observation gaps and no commitment to provide even a 

semblance of global coverage. At L-band the Japanese Space Exploration Agency (JAXA)’s JERS-1, 

ALOS PALSAR and ALOS-2 PALSAR-2 had global observation strategies, but there were significant 

gaps in coverage between satellites (from 1998-2007 and 2011-2014). In both cases, this made it 

difficult to imagine a country or company relying on data provision from a radar satellite. 

11 There are two Landsat satellites currently orbiting, Landsat 7 and 8, giving a theoretical revisit time of 8 

days, not dissimilar to Sentinel 2’s 5 days. However, in fact Landsat 7 has since 2003 suffered from a 

significant fault, with the failure of its Scan-Line Corrector (SLC) meaning about 30 % of each image is 

missing, with missing horizontal wedges becoming wider towards the edge of the images. While these data 

can still be used, they mean that an individual Landsat 7 ETM+ scene is not sufficient to make a map – 

several must be composited. Therefore the true revisit time is longer than 8 days, and for complete scenes it 

is 16 days (the time between Landsat 8 OLI observations).  



50 

Sentinel 1 changes this, as it comes with a commitment to provide frequent data and to keeping 

two satellites operating continuously into the 2030’s, providing data every 6 days over Europe, and 

with a 12 or 24 day frequency elsewhere, depending on data demand. This is a step change in 

radar data provision, and for the first time allows the design of monitoring systems relying only on 

radar data. Therefore, even if the wavelength is not ideal for forest monitoring (longer 

wavelengths would be preferred), it is likely to become a widely used satellite for forest 

monitoring in the coming years. 

NISAR: NISAR is a twin L- and S- band mission joint between NASA and the Indian Space Agency 

(ISRO). It resulted from the failure to secure final funding of a bigger planned mission, DESDynI, 

which was to combine radar measurements with simultaneous LiDAR readings, but was viewed as 

too expensive. NISAR is primarily designed to map earth deformation, with a focus on earthquake 

and volcano monitoring, but the data will also be very useful for mapping vegetation and 

vegetation change. The different backscatter responses from the two wavelengths could give 

information on structure/biomass, with, for example, an open canopy giving quite a different L/S 

difference than a closed canopy. However, the data will also be widely used as interferometric 

pairs of scenes, captured a few days apart and from slightly different angles. This interferometry 

allows the calculation of a Digital Surface Model (DSM). Normally such DSM’s are of only limited 

use, as without a terrain height model it is impossible to estimate tree height; though subtracting 

them through time has potential as a mechanism for mapping degradation and deforestation. Yet, 

looking at the difference between DSMs produced for L- and S- band could allow for an estimation 

directly of tree height, because L- will penetrate the canopy further than S-, but they will produce 

the same height estimation over bare ground.  

BIOMASS: as the name suggests, BIOMASS is the only one of these sensors specifically designed to 

study forests. It is funded by ESA, and should be launched in 2021 and operate for 5 years. It is the 

longest wavelength SAR ever to be put in space, offering the ability to directly map biomass using 

backscatter up to a higher saturation point than is currently available – potentially about 300 

tonnes ha-1 (Le Toan et al 2011). Tropical forests have biomass values above this point, so its orbit 

has been carefully designed to observe forests three times in quick succession (~3 days apart) 

every six months. It will make these observations with full polarimetry, i.e. collecting HH, HV, VH 

and VV polarisations. This combination of three observations from different angles and full 

polarimetry will allow the use of a technique called tomography to characterise the height of the 

vegetation over the ground and the density and characteristics of different canopy layers.  

Both the tomography and the backscatter measurements will be averaged to a fairly coarse 

resolution (200 m) in order to produce estimates of biomass and structure with low noise. Higher 

resolution satellites will therefore still be required to map small-scale deforestation and 

degradation. It is also only a one-off satellite – there is no current plan for a successor. However, 

while it is operational, it will provide a fantastically rich dataset on forest characteristics and their 

changes.  

It should be noted that BIOMASS will not observe the whole world, due to a conflict between its P-

band and the USA’s ballistic missile detection system. This means that north America and most 

polar regions will not be covered, but mostly does not affect the tropics (a little of northern 

Central America, and potentially some of SE Asia, will not be covered).  

LiDAR: 

GEDI: the Global Ecosystem Dynamics Investigation LiDAR (GEDI) will be placed on the 

International Space Station in 2018. It will collect billions of 25 m diameter footprints across 
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temperate and tropical forests, which will then be scaled up to provide estimates of forest 

aboveground biomass, vertical structure, and changes. While there will be no guarantees that any 

particular field plot will fall under a footprint, the high density of footprints (at least 1000 times 

denser than ICESat) should ensure many will fall in any area of interest, and the frequent repeats 

should allow degradation to be directly mapped. It will be particularly useful for providing well 

distributed and plentiful ‘ground truth’ data for other methods of mapping forest characteristics 

and changes. While GEDI only has a nominal mission of a year, if its data are widely used there is 

hope it will be extended.   

A further spaceborne LiDAR will be launched in 2018: IceSat-2. Which this is the successor to 

ICESat-1, which was successfully used for vegetation monitoring, the characteristics of the ICESat-2 

LiDAR make it much less useful for vegetation mapping than its predecessor. We therefore expect 

GEDI to be far more widely used. 

5.2 Non-traditional satellites 

The satellites described in 5.1 are all designed by space agencies (NASA, ESA, JAXA) and represent 

the result of years (often decades) of planning. They are invariably very large undertakings, with 

typical design and operating budgets in the hundreds of millions of dollars. Almost all EO products 

have come from such systems. 

However, there has been a recent trend towards the launch of satellites by companies or research 

outfits. Often these are very small satellites (cubesats or nanosatellites), with the small size and 

weight greatly reducing launch costs as such satellites can ‘piggyback’ on the launch of larger 

satellites. Such satellites do not have large instruments or solar panels, and thus are individually 

not as capable as the large satellites launched by the major space agencies or large corporations, 

but their low cost means that many can potentially be launched, so they can act as a constellation. 

Probably the longest running such constellation is that run by the DMCii (Disaster Monitoring 

Constellation for International Imaging)12, which launched four small satellites in 2002/3 providing 

global 32 m resolution data, a further set in 2009 giving a 22 m resolution, and new satellites 

recently with 2.5 m resolution. The satellites are built in the UK by Surrey Satellite Technologies 

Ltd. (SSTL). The data from the DMCii satellites are provided at a cost to the user, with the 

possibility of users directly receiving data with their own dish, effectively offering a subscription 

service to images over a region or country. These data have been used for systematic monitoring, 

for example with Brazil purchasing data to fill in data gaps caused by clouds in its Landsat or CBERS 

data for its PRODES product. However, in general the medium resolution products are not that 

well used for forest monitoring due the availability of free Landsat (and now Sentinel-2) data at a 

similar or better resolution. However, the company has been successful through offering the 

technology for target countries to build and launch their own monitoring satellites, desired by 

many countries for data sovereignty and development reasons - for example, NigeriaSAT-1 and 

NigeriaSAT-2 were funded by Nigeria but built by SSTL under the DMCii program.  

Since then other companies have started launching constellations of cubesats – satellites based 

around modules 10x10x10 cm in size. For example Planet Labs (a company based in California) 

have launched hundreds of their Dove satellites, which are triple cubesats (30x10x10 cm), 

launched in stages from various launch vehicles and directly from the International Space Station, 

capable of capturing 3-colour imagery with a 3-5 m ground resolution. They ultimately aim to be 

12 http://www.dmcii.com/ 

http://www.dmcii.com/
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able to image the entire earth every day, for which they would need >150 operational satellites in 

an ideal range of orbits, plus spares orbiting in order to replace failures. Due to launch and orbit 

failures they are a long way from having 150 active satellites in orbit, but if they succeed in this 

goal they could revolutionise forest monitoring. 

Companies such as ClydeSpace13 have made it far easier for other companies and researchers to 

build their own cubesats by providing off the shelf platforms and sensor kits. While most cubesats 

that have been launched have simple optical sensors, the reduction in cost provided by these 

innovations may allow for very specific satellite sensors to be launched, targeting a particular 

application – for example targeting imaging in a particular wavelength or at an interesting angle, 

that might have relevance for only one particular forest system.  

The problems with using cubesats for forest monitoring relate to their reduced imaging capacity 

and the ready provision of similar data from free satellites. It is not possible to hover a cubesat 

over a particular point on the earth as they are all launched into low earth orbits: geostationary 

orbits are too far out for low cost launches, typically requiring significant propulsion capacity on 

the satellite to hold the correct position, and due to distance, need powerful telescopes to image 

the earth. This is not a unique problem for Cubesats – very few EO satellites are in geostationary 

orbits, but it does prevent purchasing a custom satellite and instructing it to hover over the area of 

interest for the purchaser. Instead, it will only collect data overhead every few days at best 

(probably less frequently if a high resolution is required). To obtain a reasonable temporal 

frequency they would require a large constellation of many satellites, and at that point, they may 

as well purchase commercial data. However, if companies such as PlanetLabs manage to complete 

their constellations there could be great potential advances for forest monitoring. Until then, they 

will mainly be used for cheaply researching new methods and technologies.  

5.3 Unmanned Aerial Vehicles 

Since ~2011, the use of UAVs in forest monitoring and research has expanded very rapidly. This is 

as their costs have fallen simultaneously with their capabilities increasing. Much of this has been 

made possible due to developments in the mobile phone, resulting in the miniaturisation and 

mass production of processing chips, cameras and radios.  

Much science can be performed with the low cost (<$1000) consumer UAVs that have 

proliferated, produced by Dji (Phantom series)14 and 3DR (Solo)15 but these typically have cameras 

optimised for video.  These cameras have only 3-bands, in the visual wavelength (i.e. red, green, 

blue, not covering the infrared so useful for vegetation mapping), and often with a very wide angle 

lens, making stitching images together difficult. However, more capable out-of-the box systems 

including calibrated multi-spectral sensors are increasingly available (e.g. fixed wing systems from 

Delair Tech16 and cameras that can be easily integrated into commercial multi-rotor platforms 

from MicaSense)17. With some engineering and electronics expertise, very capable systems can be 

built from widely available components, replicating much of the data that could previously only be 

collected using expensive, manned, aircraft. Active remote sensing is also catching up, with LiDAR 

13
 https://www.clyde.space/ 

14
 http://www.dji.com/phantom 

15
 https://3dr.com/solo-drone/ 

16
 http://www.delair-tech.com/ 

17
 https://www.micasense.com/ 

https://www.clyde.space/
http://www.dji.com/phantom
https://3dr.com/solo-drone/
http://www.delair-tech.com/en/home/
http://www.micasense.com/
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and even radar systems now available in addition to optical (Esposito et al 2014, Gromek et al 

2016).  

From reviewing the literature it is clear that small optical multi-rotor UAVs have great potential for 

performing two tasks:  

a) Intensively monitoring small, high threat areas, for small-scale deforestation and

degradation (Paneque-Gálvez et al 2014)

b) Calibrating and validating satellite-based mapping and monitoring systems, through the

ability, for example, to map small canopy gaps or details of tree crown size distributions

(Getzin et al 2014, Zhang et al 2016)

We expect them to be widely used in both cases, and increasingly used to supplement field forest 

inventories by forestry departments and researchers. Their ability to collect very high resolution 

on demand, and under cloud cover, will allow for remote sensing based enforcement where 

satellite data would be too expensive or unreliable, and will greatly complement coarser 

resolution satellite products through training and testing.  

However, there are problems that may limit their use. These are described individually below: 

a) The image footprint of a camera on a UAV is typically small, and logistical and legislative

reasons prevent them flying very high (e.g. 400 feet in the UK). Therefore within a typical

20 minute flight (the limit of most battery systems for a quadcopter) only a few tens of

hectares can be imaged, made up of hundreds of individual images. For many applications

it would be preferable to image a much wider area.

b) While individual UAVs are low cost, with capable quadcopter systems available for under

$1000, the actual costs in terms of training operators, visiting a site (particularly where a

long-term presence is required in remote areas), and analysing data may be much higher.

Data analysis costs are high because stitching together hundreds of individual scenes, in

order to build up an image of an area, is difficult and time consuming. Ultimately the wide

coverage images from a satellite, even with in the case of commercial images, may end up

producing more useful data at lower overall costs.

c) UAVs often crash, whether due to component failure or human error. They therefore

often do not represent a stable form of data provision, and again costs for maintenance,

repair and replacement can be high.

d) Legislation around UAVs is evolving rapidly so no review is attempted, but restrictions on

UAV use exists to some degree or other throughout the world. In some countries using

UAVs with cameras is effectively banned (e.g. Sweden) for privacy or security reasons, and

in most tropical countries it is necessary to obtain permits for their use. It is next to

impossible to prevent a satellite image being captured of any area of the world, but

governments can effectively prevent UAV image capture in all, or sensitive locations of,

their territory.

Some of these problems can be solved by moving from small quadcopters to more capable fixed 

wing systems with a 1-3 m wingspan. Fixed wing UAVs need less energy to keep them flying as 

their wings generate lift, so flight times of 90-120 minutes are typical. However, such systems have 

higher costs to purchase and operate, need more space to take off and land, and are subject to 

more legislative control (at least for larger UAVs).  

In conclusion, UAVs do have real potential for providing high spatial and temporal frequency EO 

data on demand. They can give control of the collection and analysis of remote sensing data to 
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local communities or bodies, and in some circumstances have revolutionised what is possible with 

a given budget. Conversely, their application is limited by their small area coverage, data 

processing difficulties, unreliability, and legal restrictions. 

6 Optimal EO strategies for detecting and measuring forest change 

From Sections 1-5 of this report it should be clear that there are many different types of forest, 

types of forest change, and potential techniques for mapping these changes. There are also trade-

offs in monitoring unconnected to monitoring accuracy, in particular between resolution and cost, 

and separately between resolution and repeat frequency. The review of systematic products and 

studies presented in Section 4, and the consideration of new techniques in Section 5, are here 

combined to produce guidance on the optimum method/dataset to use for a given budget, 

resolution, forest type and cloud cover regime (Table 9).  Unlike for mapping forest 

characteristics, there is very little validation data available for these methods, and thus it was not 

possible to produce estimates of likely accuracy as for Table 4. Instead methods are listed that are 

expected to be able to produce errors of Omission and Commission below 20 %, with an 

understanding that higher cost methods within a particular resolution class will be able to achieve 

better accuracies and/or a higher temporal frequency. These are displayed in Table 9.  

Table 9 features three different price ranges for each resolution. What is considered low, medium 

and high cost varies by the resolution considered, and thus these have been varied with 

resolution as per Table 8below. 

Table 8: Budget ranges of monitoring costs per year per for Table 9 cost categories 

Very high resolution 

(<10 m) 

High resolution 

(10-30 m) 

Medium resolution 

(>100 m) 

Low Cost (LC) <$3/ha <$1/ha <$0.1/ha 

Medium Cost (MC) $3-10/ha $1-5/ha $0.1-2/ha 

High Cost (HC) >$10/ha >$5/ha >$2/ha 

These costs are approximations, with the reality depending on the area and situation in question. 

In most cases, the majority of the cost relates to the data analysis, with a smaller proportion for 

purchase of image data where applicable. Where the proposed data is identical at multiple price 

points, it is because these data represent the optimal system at that resolution, and increases in 

accuracy can be achieved at higher cost through the use of more sophisticated algorithms and/or 

the processing of denser time series. Higher cost options may exceed the 20% 

omission/commission error requirement, and low cost options may offer imagery at a lower 

temporal frequency than high cost options. 
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Table 9: Optimal data for forest change mapping, to obtain errors of omission and commission both <20 %. 

HC=High Cost; MC=Medium Cost; LC=Low Cost; ML=Machine Learning; TS=Time Series; OTC = one time 

classification; Sen= Sentinel; PALSAR-2 = ALOS-2 PALSAR-2 L-band radar, with NISAR offering similar data 

from 2020; RapidEye = RapidEye or similar 5 m resolution low cost data (e.g. Planet Labs); Hyperspatial = 

<2.5 m resolution satellite, e.g. GeoEye, Pleides; UAV = optical UAV with <1m resolution; TDX = TanDEM-X, 

analysed through changing DEM height. Items with ‘?’ at the start are not proven to achieve the accuracy 

stated. 

Medium/low cloud (<70 % time-averaged 

cloud cover, Fig. 3) 

High cloud (>70 % time-averaged 

cloud cover, see Fig. 3) 

Resolution <10m 10-30 m > 100 m <10m 10-30 m > 100 m

Tropical moist/wet forest  (>1500-2000 mm rain, >200 tonnes ha-1) 

Mapping 

deforestation 

HC: 

Hyperspatial, 

OTC 

MC: 

RapidEye, TS 

LC: 

RapidEye, 

OTC 

HC: Sen-2, ML 

MC: Sen-2, 

TS/OTC 

LC: UMD data or 

Landsat/Sen-2 

OTC 

HC: Sen-3 & 

MODIS, ML 

MC: MODIS, 

TS 

LC: FORMA* 

data 

HC: UAV or 

TDX, OTC 

MC: not 

possible 

LC: not 

possible 

HC: Sen-1, 

TS 

MC: Sen-1, 

TS 

LC: UMD 

data 

HC: Sen-3 & 

MODIS, ML 

MC: MODIS, 

TS 

LC: FORMA* 

data 

Mapping 

forest 

degradation 

HC: LiDAR, 

UAV or 

hyperspatial 

OTC 

MC: not 

possible 

LC: not 

possible 

HC: full waveform 

LiDAR at high 

altitude 

MC: Sen-1/2, TS 

LC: not possible 

HC: ?Sen-1/3 

ML 

MC: fr. 2018 

GEDI +Sen-3 

LC: fr. 2021 

BIOMASS 

HC: UAV or 

TDX, OTC 

MC: not 

possible 

LC: not 

possible 

HC: full 

waveform 

LiDAR at 

high 

altitude 

MC: Sen-1, 

TS 

LC: not 

possible 

HC: ?Sen-1/3 

ML 

MC: fr. 2018 

GEDI +Sen-3 

LC: fr. 2021 

BIOMASS 

Mapping 

changing 

biomass 

HC: LiDAR, 

OTC 

MC: not 

possible 

LC: not 

possible 

HC: full waveform 

LiDAR at high 

altitude 

MC: not possible 

LC: not possible 

HC: not 

possible now 

MC: fr. 2018 

GEDI +Sen-

3/MODIS 

LC: fr. 2021 

BIOMASS 

HC: LiDAR, 

OTC 

MC: not 

possible 

LC: not 

possible 

HC: full 

waveform 

LiDAR at 

high 

altitude 

MC: not 

possible 

LC: not 

possible 

HC: not 

possible now 

MC: fr.2021 

BIOMASS 

LC: fr. 2021 

BIOMASS 

Tropical dry forest and savanna (<1500 mm rain, <200 tonnes ha-1, grass may be 

present) 

Mapping 

deforestation 

HC: 

Hyperspatial, 

OTC 

MC: 

RapidEye, TS 

LC: 

RapidEye, 

OTC 

HC: PALSAR-2, TS 

MC: Sen-1, 

TS/OTC 

LC: 

Landsat/Sen2,OTC 

Grass, tree 

and regrowth 

confused for 

optical data 

and difficult to 

unmix at this 

resolution. No 

coarse 

resolution 

radar exists. 

Coarse 

resolution 

mapping 

HC: UAV or 

TDX, OTC 

MC: not 

possible 

LC: not 

possible 

HC: PALSAR-

2, TS 

MC: Sen-1, 

TS/OTC 

LC: not 

possible 

Grass, tree 

and regrowth 

confused for 

optical data 

and difficult to 

unmix at this 

resolution. 

No coarse 

resolution 

radar exists. 

Coarse 

resolution 

mapping 

Mapping 

forest 

degradation 

HC: LiDAR, 

UAV or 

hyperspatial 

OTC 

MC: 

HC: PALSAR-2, TS 

MC: Sen-1, TS 

LC: ?PALSAR-2 

mosiac, OTC 

HC: LiDAR, 

UAV or TDX 

OTC 

MC: not 

possible 

HC: PALSAR-

2, TS 

MC: Sen-1, 

TS 

LC: 
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?RapidEye, 

TS 

LC: not 

possible 

therefore 

difficult, 

recommend 

using higher 

resolution 

products. Fr. 

2021 

BIOMASS will 

fix this. 

LC: not 

possible 

?PALSAR-2 

mosiac, OTC 

therefore 

difficult, 

recommend 

using higher 

resolution 

products. Fr. 

2021 

BIOMASS will 

fix this. 

Mapping 

changing 

biomass 

HC: LiDAR, 

OTC 

MC: not 

possible 

LC: not 

possible 

HC: full waveform 

LiDAR at high 

altitude 

MC: PALSAR-2, 

OTC 

LC: ?PALSAR-2 

mosiac, OTC 

HC: LiDAR, 

OTC 

MC: not 

possible 

LC: not 

possible 

HC: full 

waveform 

LiDAR at 

high 

altitude 

MC: 

PALSAR-2, 

OTC 

LC: 

?PALSAR-2 

mosiac, OTC 

*FORMA is currently suspended, should recommence by 2017. Terra-I is also suitable, but only produced for

Latin America.
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When reviewing Table 9, the first thing to note is the ‘not possible’ classes: 

Deforestation: in moist/wet tropical forests, there are suitable techniques at all costs and 

resolutions for deforestation monitoring in medium/low cloud regions. In cloudier regions only 

low cost monitoring at <10 m resolution is not possible.  

Degradation: It is not currently possible to achieve reasonable accuracies for medium and low cost 

monitoring of degradation for moist/wet tropical forest at <10 m, and low cost monitoring of 

degradation in these forests <100 m, regardless of cloud cover.  The situation is similar for tropical 

dry forests and savanna at <10 m resolution, though free PALSAR-2 mosaics released by JAXA 

make a low cost option at <100 m resolution possible.  

Biomass change: it is clear that this is the most challenging to map using current technologies. 

LiDAR from aircraft is the only suitable technique given for <100 m resolution maps at tropical 

forest, and this is always a high cost option. At >100 m resolution no solution is available now, but 

the launch of GEDI and BIOMASS provide the possibility of suitable products. In dry 

forests/savanna LiDAR still represents the best options for <100m, and there are no current 

options for >100 m resolution, but at 10-30 m resolution ALOS-2 PALSAR-2 can provide biomass 

maps with reasonable accuracy.  

Active research is continuing in these areas, and it is possible that high temporal frequency data 

from Landsat/Sentinel-1/Sentinel-2 over a whole year can map biomass changes with reasonable 

accuracy, but this is not yet proven.  

In terms of what is possible, sadly the systematic products listed in in Table 5 do not fill many of 

the boxes. The UMD data provides a reasonable low cost deforestation option for tropical 

moist/wet forests at a 30 m resolution, though it should be tested using high resolution data to 

provide local estimates of the rates of error of omission/commission in order to discover if its use 

is reasonable and to calculate bias-corrected error estimates. Furthermore, FORMA has been 

suggested for deforestation mapping at a >100 m resolution (with Terra-I also being suitable for 

South America, which is the only area where it is currently produced). However, in drier forest 

systems where the forests are highly deciduous and grass may be present, it seems that these 

automated systems currently have too low accuracies to be recommended, though improvements 

are possible (Hansen & Loveland 2012). 

In general, optical data is most useful for tropical moist/wet forests under low/medium cloud 

conditions, with radar data being preferred for dry forest systems and high cloud areas, as it is less 

easily confused by the grass layer and can see through clouds. The exceptions are for <10 m 

resolution data, where the pixel size is similar or smaller in size to a tree crown, and thus the 

confusion from grass is less of a problem, and at a >100m resolution in cloudy areas, where there 

may still be sufficient observations to allow optical data to be useful. Radar is especially useful for 

mapping biomass at a 10-30 m resolution in dry forests and savannas, and for mapping 

deforestation and degradation at <10 m and 10-30 m resolution under cloud cover in all forest 

types. Unfortunately no coarse resolution, wide-swath radar system exists (or at least no such data 

is captured over land), until the launch of BIOMASS in 2021. LiDAR from aircraft of UAV is the 

preferred option for biomass change in all situations at <100 m resolution, and also has a role for 

degradation mapping in higher biomass forests. 



7 System design considerations 

7.1 Customising methods to local conditions 

When attempting to use Table 9 to choose the optimal method to meet user requirements, it is 

important to fully consider the temporal and spatial resolution and degree of precision required. 

There will always be a push on the one hand towards using lower cost methods, and on the other, 

to using higher resolution/cost methods. The most useful monitoring system will be at the 

coarsest resolution possible to meet the user requirements (as excess resolution adds cost and 

increases the size of all output files without necessarily increasing accuracy). It will also not 

overstretch a budget on data purchase/processing costs in order to ensure sufficient funds remain 

for ground truth and validation work (normally at least 20 % of the budget is required for such 

activities, and in difficult to access areas it may be far more).  

It is not always necessary for validation to involve ground studies, though they are normally 

necessary as part of the validation effort. Often validation could be performed by using a method 

at the same price point but at a step up in resolution. So for example, a medium-cost 

deforestation map at a 10-30 m resolution (produced using a time series analysis of Sentinel-2 

data in a low cloud area) could be validated using RapidEye time series data for subsets of the full 

study. Alternatively, a PALSAR-2 time series used for mapping degradation in a tropical dry forest 

could be validated with LiDAR, UAV or hyperspatial satellite data, again for a subset. Often such 

data is necessary for training, in addition to being useful for validation.  

Validation should be performed across the range of forest types and disturbance regimes within 

the area being monitored. As the size considered increases from a small region (e.g. a national 

park) through to a whole country, the diversity of forest and change characteristics will increase 

dramatically, and it is imperative that the size of the ground truth effort increases as well. When 

the monitoring is being performed at a large (e.g. country) scale, it is quite possible that more than 

one method/technology will be necessary: for example Peru contains lowland Amazon forest, dry 

and cloud forests, all of which may need different systems.  

The literature review of forest change methods found, unfortunately, few studies that had 

performed such accuracy assessments. This made it difficult to fully assess the expected accuracy 

of each method and data type in isolation, and impossible to split their accuracy into a finer range 

of forest types than the wet/moist vs dry shown in Table 9. However, it is inevitable that the 

optimum approach will vary by the local forest type, the dominant disturbance regime, and the 

frequency/accuracy requirements. These frequency/accuracy requirements are partially included 

in Table 9, as the user should assume that higher requirements will require the use of higher cost 

methods. However, modulation by disturbance type and forest conditions was not included.  

Before setting up a monitoring system in an area, it would be ideal to find any published studies or 

reports that have monitored deforestation, degradation or biomass change in the area of interest, 

or even those that have made one-time maps of forest type or characteristics. This can give an 

idea of the local accuracy values that can be achieved, and any particularly issues with one method 

or another in that area. For example, it may be that in a steeply mountainous area, it was found 

that radar data performed worse than expected, or that a particular valley, an otherwise low-cloud 

area is always cloud/mist covered during the late-morning optical satellite passes. If such studies 

are not available, a pilot study or studies testing the methods to be used would be highly 

advisable, ideally involving the collection of ground truth data.  

Ultimately, some or many user requirements may simply not be achievable for a given budget in a 

particular area. In this case it is possible to follow a sampling approach (GFOI, 2014), and collect 
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monitoring data for only a subset of the full area of interest. Ideally, the full area would be still 

covered at a coarser resolution, in order to identify hotspots of change and target future higher 

resolution coverage, but sometimes this will not be possible. In such cases free datasets such as 

UMD, GLAD, FORMA and Terra-I are particularly useful: even if they do not monitor the parameter 

in question (e.g. degradation or biomass), including their data as a targeting system for a forest 

monitoring system involving sampling with custom produced data products can greatly increase 

the utility of a system without great cost. 

7.2 Data management and dissemination 

Most of the forest monitoring activities described in Table 9 involve significant data volumes and 

processing capacities. Many countries will have to purchase specialist hardware, invest in high-

speed internet (or direct satellite downlink), or outsource the analysis to specialist companies 

(unlikely for most countries for reasons of sovereignty, but probably the main option for many 

companies policing their zero deforestation commitments or many subnational REDD+ projects 

managed by NGOs). These will be challenging, but international bodies such as UN-REDD, FAO and 

the Forest Carbon Partnership Facility (FCPF, funded by the World Bank), as well as many bilateral 

aid programs, will assist with training and setting up such systems. Costs will obviously be lowest if 

processed products (such as UMD or FORMA) are used, but investments in hardware and internet 

facilities may still be necessary to ingest and process these data to produce useful outputs. 

Given the hardware challenges described above, it is vital that investment in data dissemination is 

not forgotten. Producing forest change products is only useful if the required stakeholders 

(government departments, NGOs, companies, citizens) can access and query the data. Data 

dissemination should be done through several routes aimed at different users, with the provision 

of appropriate metadata, manuals and training. This will be a significant cost; as a guide, most EO 

satellite missions allocate at least 10 % of their budget towards data dissemination, and often end 

up requesting significant further annual budgets if a mission exceeds its nominal lifetime or if data 

use exceeds expectations.  

Ideally, all data would be made available as open data, free of charge and without restrictive 

licence terms. This will maximise the use of the product, benefitting the economy and citizens, and 

often leading to innovative users that could not have been envisaged in advance. Not insisting on 

complex registration and nominal payment architecture can also reduce administrative costs 

related to data provision, reducing overall costs, though data volumes will be higher than if 

restrictions are in place, increasing bandwidth costs. However, for data sovereignty or financial 

reasons, often it will not be possible for open data provision; in this case the most open terms 

possible should be used, and ideally, data should be provided to researchers for testing, validation, 

and research purposes without charge.  

Regardless of the licensing discussed above, the data should be offered in a variety of ways to 

meet different user requirements and users with different levels of skill. For example, raw data 

could be released so that skilled users, such as researchers and companies, could validate it and 

use it to produce their own added value services. Also, processed data could be displayed on 

platforms allowing easy display and querying of the data without the need for it to be downloaded 

(requiring high bandwidth and specialist software and analysis skills). Lastly, for a lower level of 

capacity still, printed maps and reports could be made available, giving access to the data for areas 

without access to computers and the internet.  

An example of good data provision is the UMD data. This is provided on: 
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- an easy to use interface allowing visualisation of the raw data along with other mapping layers

for comparison: https://earthenginepartners.appspot.com/science-2013-global-forest

- a third-party site, allowing querying of the data and access to other related datasets

http://www.globalforestwatch.org/

- a site offering the raw data at http://earthenginepartners.appspot.com/science

-2013-global- forest/download_v1.2.html

Further services that could have been used to distribute these data could be alert services that 

send an email or text message if forest change is noticed in an area of interest, as exist for 

example derived from the MODIS fire product18, and printed maps and documents available to 

target specific user groups. 

Web services have also been developed that offer enhanced functionality for creating user-specific 

queries and reports without requiring any analysis software or downloads. An example of these is 

Ecometrica Ltd’s EO Lab services: this website presents the output of a combination of forest 

monitoring and models over the Amazon Basin, derived from a project funded by the UK Space 

Agency and developed in partnership with Brazilian organisations and the University of 

Edinburgh.19  

As REDD+ becomes fully operational in the 2020s, with individual active MRV systems in each 

tropical country and significant funds transferred related to success compared to reference levels, 

there may be significant advantages for all stakeholders in moving towards a common digital 

infrastructure for forest monitoring. Significant efficiencies of scale could be achieved by data 

processing occurring in the cloud, rather than within servers in each country, using common 

sophisticated tools to take in reference data and produce automatic accuracy/bias estimates, and 

disseminate data through common web platforms. As well as reducing cost and increasing 

accuracy, such a common platform would increase trust in the products produced and encourage 

the sharing of best practice. Satellite providers, both of free and charged data, could be interested 

in collaborating and thus providing data to a single platform rather than to many individual users 

distributed around the globe.  

The GFOI, the Group on Earth Observations (GEO), UN-REDD, FAO, the World Bank, and others, 

could potentially facilitate such a platform; indeed in some ways Global Forest Watch could be 

considered a precursor of such a system, though without significant country buy-in. We consider it 

unlikely that such a platform will be created, at least any time soon: countries are protective of 

their sovereignty over monitoring and would prefer to create their own systems. Yet potentially, 

they could be prepared to give up some sovereignty on monitoring in order to reduce costs, 

increase trust (and therefore funding from REDD+), or access functionality that they are unable to 

replicate themselves. As such, any attempt to build a platform should be modular and flexible, so 

that countries could use parts of it even if not the end-to-end stream. 

There are many areas in the forest monitoring chain where outside researchers and organisations 

can provide support; data dissemination may represent one that could easily be left out, with a 

rush towards supporting the use of advanced technologies, but support here could potentially 

result in very large gains from a relatively small investment. 

18
 (https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms) 

19
 https://cardamom.ed-ac.ourecosystem.com/interface/ 

https://earthenginepartners.appspot.com/science-2013-global-forest
http://www.globalforestwatch.org/
http://earthenginepartners.appspot.com/science-2013-global-%20forest/download_v1.2.html
http://earthenginepartners.appspot.com/science-2013-global-%20forest/download_v1.2.html
https://earthdata.nasa.gov/earth-observation-data/near-real-time/firms
https://cardamom.ed-ac.ourecosystem.com/interface/
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A Review of Earth Observation Methods for Detecting and Measuring 
Forest Change in the Tropics
The UK has committed to support developing countries’ efforts to mitigate 
and adapt to climate change as part of international agreements under 
the UNFCCC. The majority of this support is delivered through the UK’s 
International Climate Fund (ICF). From 2011 to 2021 approximately £2 
billion UK aid is likely to be directed, through the ICF, towards forestry 
programmes aimed at reducing deforestation, forest degradation or 
promoting forest restoration. 

To ensure that UK aid is used effectively and to learn from its application 
ICF investments are required to report performance against relevant 
indicators. A key indicator for forestry programmes is the area of avoided 
forest loss and degradation, also known as the Hectares Indicator (KPI 8). 
There are several quantitative and qualitative challenges associated with 
producing credible, transparent estimates of this impact at reasonable cost.

The availability of accurate, consistent measures of forest area and forest 
change are critical to the assessment of the Hectares Indicator.
This document provides an assessment of current and emerging earth 
observation technologies based on  satellites and other aerial data sources 
and an assessment of how these can be used to map forests and forest 
changes.
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